Neuroendocrine Prostate Cancer (NEPC): Are We Selecting For It With Our Current Androgen Annihilation?

Jehonathan H. Pinthus MD, Ph.D.
Associate professor
Department of Surgery-Urology
McMaster University

26th International Prostate Cancer Update January 22nd 2016 Vail, Colorado, USA

Androgen annihilation as a new therapeutic paradigm in advanced prostate cancer

Kyle O. Rove and E. David Crawford

- Cardiovascular disease
- Emergence of NEPC

Neuroendocrine cells are part of normal, benign prostate cells

- NEC are typically situated in the basal cell compartment with dendritic cell processes projecting into the layer of luminal.
- •Need for specific staining to identify.
- •Secrete trophic neuropeptide (bombesin, calcitonin, serotonin, parathyroid like hormone) and growth factors (VEGF).
- •Terminally differentiated cells (no proliferative activity, express anti-apoptotic factors).

Primary ("de novo") NEPC

- Very rare (<1%)
- SCCP, large cell NE carcinoma, carcinoid
- frequent visceral and bulky soft-tissue metastases and limited duration of response to both hormonal therapy and cytotoxic chemotherapy.
- Low serum prostate-specific antigen (PSA) level and high serum levels of NE markers (CgA)
- Treatment involves cisplatin or carboplatin in combination with taxanes

NE differentiation in hormone naïve PC

• 5-10% of prostatic adeno-carcinoma contain clusters/aggregates of "NE like" malignant cells (focal NE differentiation).

 Genetic characterization of these cells suggest their linkage to the neighboring adenocarcinoma cells.

Unclear prognostic significance.

Secondary development of NEPC

- Common, estimated to represent up to 25% of lethal prostate cancer.
- Trans-differentiation of adeno-carcinoma cells (epithelial plasticity d/t selective pressure?, common progenitor?).
- Resistant to ADT
- May promote Adeno-carcinoma cell tumorginicity through paracrine non AR mediated pathways

NE differentiation is very common in metastatic sites

- Evaluation of an archival set of metastatic site biopsies (MSB) to determine NED expression patterns
- 237 MSB from 187 pts. bone (102), lung (40), liver (40), lymph node (20), bladder (14), soft tissue (11), brain (4), others (4).
- IHC for chromogranin-A and synaptophysin.
- All tumors were adenocarcinomas or poorly differentiated carcinomas
- No small cell carcinoma found, BUT, 50% showed positive NED.
- NED expression was positive in 41% bone sites, compared to 53% of nonbone sites
- NED expression was observed in 44% of hormone sensitive cases and
 56% of CRPC cases.
 Jimenez et al ASCO meeting 2014

CTCs from patients with NEPC identified in a subset (10.7%)of CRPC patients.

Trans-differentiation from epithelial-like phenotype to a NE-like phenotype as a consequence of treatment induced-selective pressure?

Modeling in-vitro

- LNCaP cells
- Androgen depletion induce NE-differentiation
- Restoring androgens suppress NE-differentiation

 Acquisition of an NE phenotype by PCa cells can be induced by chronic exposure to docetaxel

The trans differentiation process from epithelial to neuroendocrine tumor phenotype can be considered a consequence of the selective pressure (ADT)

- NEC lack the AR
- NEC are deficient in cell regulators (P53, RB1)
- NEC over-express cell cycle genes (ex. cyclin D1, AURA Kinase A- AURKA)
- Androgen receptors splice variants are associated with up regulation of NE genes (AGR2, AURKA, SSTR2)-Ferrari ASCO 2014 meeting

Over-expression of *protocadherin-PC* (*PCDH-PC* or *PCDH11Y*) can drive NE trans-differentiation

- ADT upregulates PCDH-PC
- PCDH-PC is an anti-apoptotic gene.
- Encodes on the Y-chromosome (Yp11.2)
- PCDH-PC expression reflects early-onset adaptive mechanism following ADT
- PCDH-PC over-expression induces NE phenotype in PC cells and promotes their survival under diverse stress conditions.

Terry et al, Neoplasia 2013

Is the plasticity induced by the selective pressure reversible?

- In patients with *EGFR*-mutant non—small-cell lung cancer who develop small-cell features as a mechanism of resistance to EGFR inhibition, the discontinuation of the EGFR inhibitor results in reversal of the small-cell phenotype.
- It is not known whether clinically such plasticity exists in small-cell/neuroendocrine prostate cancer.

Molecular pathways that are involved in NE differentiation of prostate cancer

- RB loss
- MYC over-expression
- PCDH-PC upregulation
- AURKA over-expression
- FoxA2/HIF-1a complex
- Down-regulation of RE1-silencer factor (REST)

Andrgens inhibits REST expression which regulates NE differentiation in LNCaP cells

A common progenitor cell?

Experimentally, NEC are not arising from pre-existing committed Epithelial cells but probably develop from bipotential stem/progenitor cells

FVB-TRAMP mice have worse survival than B6-TRAMP mice because of rapid development and progression of NEC-PC arising from bi-potential stem cells that express epithelial (E- cadherin) and NE (synaptophysin) markers and FOX1/FOX2 transcription factors.

Chiaverotti et al The American Journal of Pathology 2008

ERG gene rearrangements are common in prostatic small cell carcinomas

- The occurrence of ERG gene rearrangements was examined by fluorescence in situ hybridization in prostatic, bladder and lung small cell carcinomas.
- Presence of ERG rearrangements was found in nearly half of the prostatic small cell carcinomas is a similar rate of rearrangement to that found in prostatic acinar carcinomas.
- No cases of bladder or lung small cell carcinomas showed ERG rearrangement.
- A high concordance rate of ERG rearrangement between the small cell and acinar components in a given patient was found (83%).
- These findings support a common origin for acinar prostatic adenocarcinoma and small cell carcinoma of the prostate

WISH-PC2: A Unique Xenograft Model of Human Prostatic Small Cell Carcinoma¹

Jehonathan H. Pinthus, Tova Waks, Daniel G. Schindler, Alon Harmelin, Jonathan W. Said, Arie Belldegrun, Jacob Ramon, and Zelig Eshhar²

Androgen responsive growth of pure SSCP is related to off target growth effects of testosterone

- •in the first generation, 20% of the mice into which the tumor pieces were implanted had elevated serum PSA levels
- •The WISH-PC2 xenograft grows relatively rapidly and with a high take rate (90–100% of the animals).
- •Androgens enhance the growth of the AR-negative xenograft, probably via an indirect effect on the surrounding stroma

Table 1 Phenotypic features of WISH-PC2 Feature Expression DNA ploidy Aneuploid Proliferative Index (Ki-67)^a High Bc1-2^a Positive Mutated p53a Positive MDR1 gene product^a Negative PSAa,b Negative PSCAa,b Negative $PSMA^b$ Negative PAP^{a} Negative $AR^{a,b}$ Negative STEAP^b Positive PCTA-1/galactin-8^{b,c} Positive Cytokeratin 8^b Positive Cytokeratin 18b Positive Chromogranin Aa,d Positive NSE^a Positive Synaptophysin^a Positive Her-2/neue Positive Her-3/neue Positive Her-4/neue Positive MHC class-Ie Positive ^a Determined by immunohistochemistry.

b Determined by RT-PCR.

^c Determined by Western blot analysis
^d Determined by ELISA of murine host plasma.

^e Determined by FACS analysis.

Pinthus et al. Cancer Res 2000

NE cells can function as endocrineparacrine cells of the prostate

- A suggested role as intraepithelial regulatory cells displaying hybrid epithelial, neural, and endocrine characteristics.
- secreting alternative growth factors such as bombesin, serotonin, somatostatin, calcitonin, and parathyroid hormone-related protein.
- SCCP is composed of an enriched population of androgen-independent cells whose growth is sustained through alternate paracrine and autocrine pathways

Aurora Kinase A is over-expressed (gene amplification) in NEPC

Inhibition of AURKA (PHA-730358) suppress the growth of NEPC

Beltran et al Cancer Discov 2011

Aurora Kinase A Inhibitor MLN8237

Treatment

- Orally administered Aurora kinase A inhibitor.
- 50 mg twice daily for 7 days repeated every 21 days.
- Multi-institutional single-arm, open-label Phase 2 trial in patients with metastatic castrate resistant and NEPC (SCPC, adenocarcinoma plus > 50% immunohistochemical staining for NE markers. Response and progression (primary end point) are evaluated by CT/MRI scan and bone scan after every 3 cycles

Prevention?

•AURKA amplification in primary adenocarcinoma of the prostate predicts for late stage development of NEPC in CRPC patients

Take home massages (cognitive doggy bag)

- NEPC develops from adeno-carcinoma of the prostate
- This process is a result selective pressure (ADT and cytotoxic agents) and involves specific molecular pathways (PCDH-PC, AURAKA, REST)
- An increase incidence of NEPC in the current era of novel ADT agents is suspected.
- NEPC cells secret alternative growth factors such and thus can promote AR independent growth.
- Potential for targeted therapy (Aurora kinase A inhibitors)