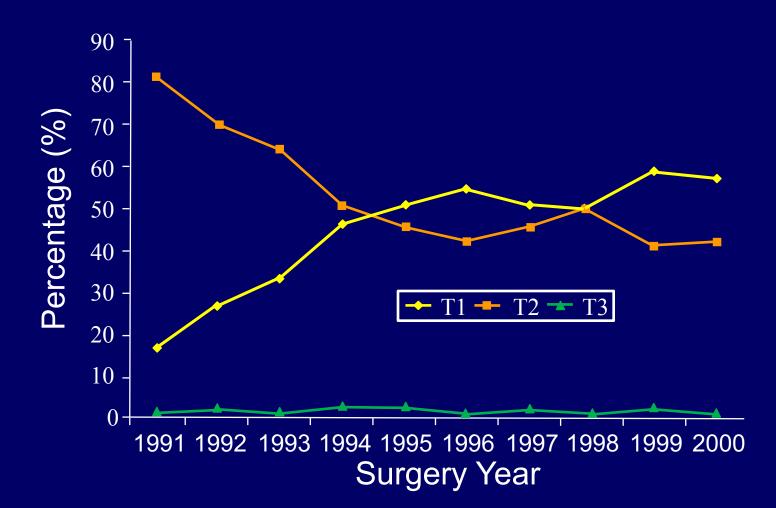
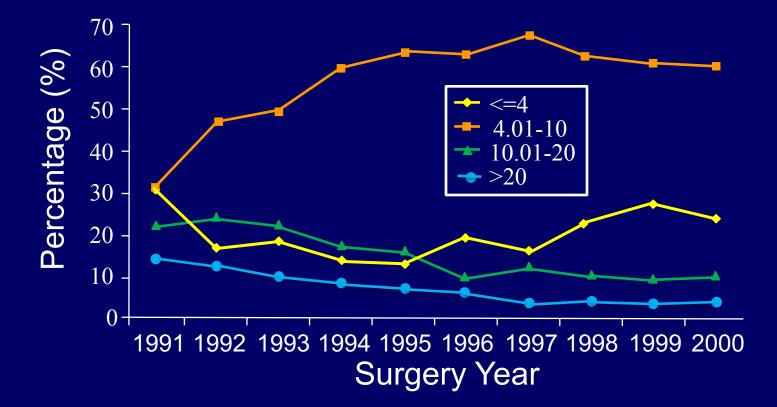
Changing Distribution, Size and Grade of Prostate Cancer: A 16-Year Whole-Mount Prostatectomy Analysis

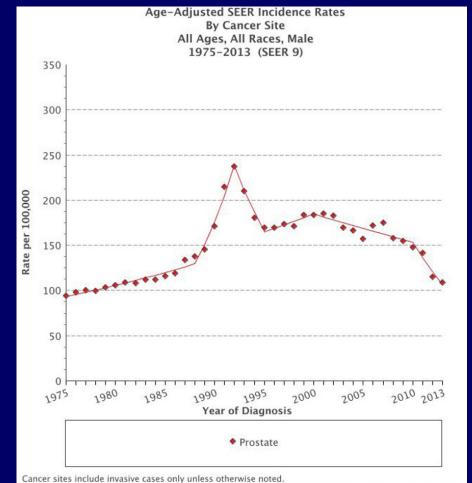

M. Scott Lucia, MD Professor and Vice Chair of Anatomic Pathology Chief of Genitourinary and Renal Pathology Dept. of Pathology University of Colorado SOM

- MDxHealth– consultant
- 3DBiopsy shareholder


- Shift in clinical presentation PSA era
 - 1990s 2000s: Earlier stage; lower PSAs

DoD CPDR National Database: Clinical T stage at diagnosis for patients who underwent prostatectomy

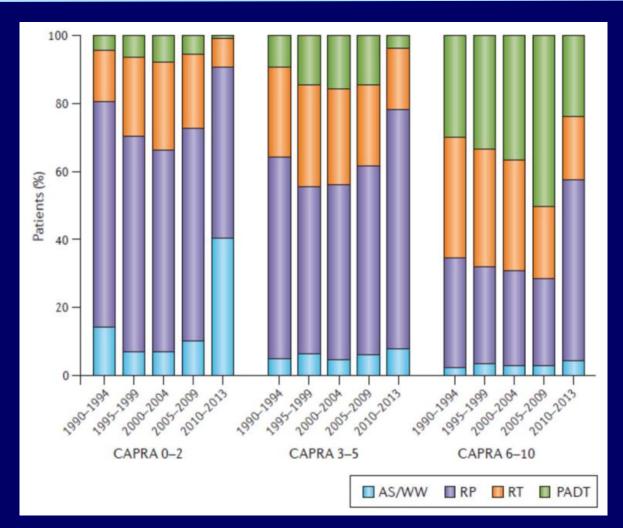
DoD = Department of Defense CPDR = Center for Prostate Disease Research Moul JW, et al. Surgery 2002;132:213-9 © 2002, Mosby, Inc.


DoD CPDR National Database: PSA level at diagnosis for patients who underwent prostatectomy

Moul JW, et al. Surgery 2002;132:213-9 © 2002, Mosby, Inc.

- Shift in clinical presentation PSA era
 - 1990s 2000s: Earlier stage; lower PSAs
- Shift in screening
 - Overtreatment of biologically indolent tumors
 - 2012: PSA receives "D" rating for screening
 - Recent decline in prostate cancer diagnoses

Yearly Trends in Prostate Cancer Diagnosis: SEER Registry



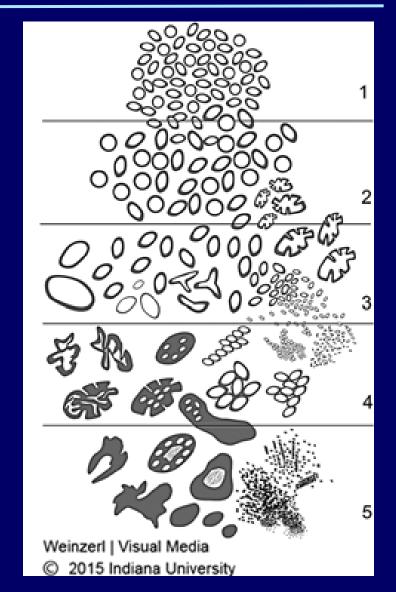
Rates are per 100,000 and are age-adjusted to the 2000 US Std Population (19 age groups - Census P25-1130). Regression lines are calculated using the Joinpoint Regression Program Version 4.2.0, April 2015, National Cancer Institute.

Incidence source: SEER 9 areas (San Francisco, Connecticut, Detroit, Hawaii, Iowa, New Mexico, Seattle, Utah, and Atlanta).

- Shift in clinical presentation
 - 1990s 2000s: Earlier stage; lower PSAs
- Shift in screening
 - Overtreatment of biologically indolent tumors
 - 2012: PSA receives "D" rating for screening
 - Recent decline in prostate cancer diagnoses
- Shift in treatment paradigms
 - Recognition that not all cancers need treatment
 - Active surveillance and TFT for low-risk cancer

Trends in prostate cancer treatment

Data from CapSURE Registry


Nature Publishing Group © Murphy, D.G. & Loeb, S. Nat Rev Urol 2015;12:604-5.

- Shift in clinical presentation
 - 1990s 2000s: Earlier stage; lower PSAs
- Shift in screening
 - Overtreatment of biologically indolent tumors
 - 2012: PSA receives "D" rating for screening
 - Recent decline in prostate cancer diagnoses
- Shift in treatment paradigms
 - Recognition that not all cancers need treatment
 - Active surveillance and TFT for low-risk cancer
- Shift in pathologist's grading practices
 - ISUP 2005 & 2014
 - Prognostic grade groups

Prostatic Adenocarcinoma

Gleason Grading¹

- Morphologic resemblance to normal prostate
- Degree of invasiveness
- Score = most + 2nd most
- Biopsies: most + highest remaining grade present^{2,3}
- Amount of pattern 4/5 most important for prognosis
- ISUP: Refinements adopted in 2005³ and 2014⁴
 - 1. Gleason DF. Urologic Pathology: The Prostate, 1977.
 - 2. CAP: Arch Pathol Lab Med, 2000.
 - 3. ISUP: Amer J Surg Pathol, 2005.
 - 4. ISUP: Amer J Surg Pathol, 2016.

Impact of 2005 ISUP Gleason Grading Consensus on biopsy Gleason scores and grade patterns¹

Distribution of biopsy Gleason scores (GS) before and after ISUP consensus.

	GS≤6	GS=7	GS≥8
2000-2004 (n=908)	617 (68%)	271 (30%)	20 (2%)
2005-2007 (n=423)	232 (55%)	180 (43%)	11 (3%)

Comparison of mean biopsy Gleason scores and primary (1°) and secondary (2°) Gleason patterns (GP) before and after ISUP consensus.

	2000-2004	2005-2007	P-value*
GS	6.34	6.49	<0.0001
1° GP	3.08	3.10	0.314
2° GP	3.26	3.39	<0.001

* Student's *t-test*

1. Adapted from: Zareba P, et al. Histopathol 2009;55:384-91.

Prostate cancer mortality rates according to prostatectomy Gleason score¹

N=693 patients from 1984-2004

Standardized Review*			Original Source					
GS	No. of PCa Deaths	Person- Years	No.	Mortality Rate (per 1000 person -years)	No. of PCa Deaths	Person- Years	No.	Mortality Rate (per 1000 person -years)
2-5 6 3+4 4+3 8 9-10 Total	0 0 9 7 15 37	64.6 2,216.0 2,864.9 1,419.1 482.3 383.7 7,430.6	6 200 257 134 51 45 693	0 0 2.1 6.3 14.5 39.1 5.0	1 3 12 9 4 8 37	2,178.8 2,331.5 1,701.8 542.5 435.3 240.7 7,430.6	171 221 171 55 47 28 693	0.5 1.3 7.1 16.6 9.2 33.2 5.0

* Using contemporary Gleason grading.

1. Adapted from: Stark JR, et al. J Clin Oncol 2009;27:3459-64.

Classification of Prostate Cancer Using 5-teired Prognostic Grade Groupings

The overall Gleason score is based on the core with the highest Gleason score. Gleason scores can be grouped and range from Prognostic Grade Group I (most favorable) to Prognostic Grade Group V (least favorable).

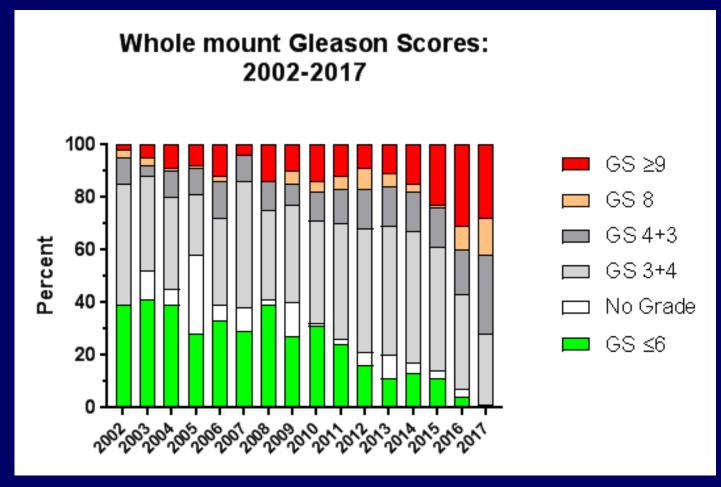
Gleason score ≤ 6:	Prognostic Grade Group I
Gleason score 3 + 4 = 7:	Prognostic Grade Group II
Gleason score 4 + 3 = 7:	Prognostic Grade Group III
Gleason score 8:	Prognostic Grade Group IV
Gleason score 9-10:	Prognostic Grade Group V

- Shift in clinical presentation PSA era
 - 1990s 2000a: Earlier ataga: lawar DSAa
- Shift in
 - Over
 - 2012
 - Rece
- Shift in
 - Reco
 - Active


??? Impact on Pathological Features of Tumors on Prostatectomy

- Shift in pathologist's grading practices
 - ISUP 2005 & 2014
 - Prognostic grade groups

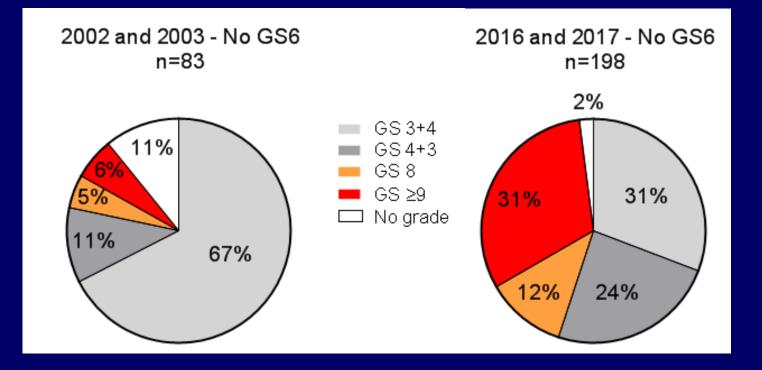
Assessing the Impact of Practice Changes


	Possible impact on Prostatectomy
ISUP Grading	Shift towards higher grade
Increase in AS	↓ in low grade cancers Relative proportional ↑ in higher grades
Decrease in screening	<pre>? ↓ in low grade cancers ? Disproportional ↑ in higher grades ? ↑ in stage/ volume</pre>

- Univ. of Colo Prostate Cancer Database:
 - All prostates that were whole-mount processed
 - Tumors graded by 2 genitourinary pathologists
 - Grade, stage, and tumor volume

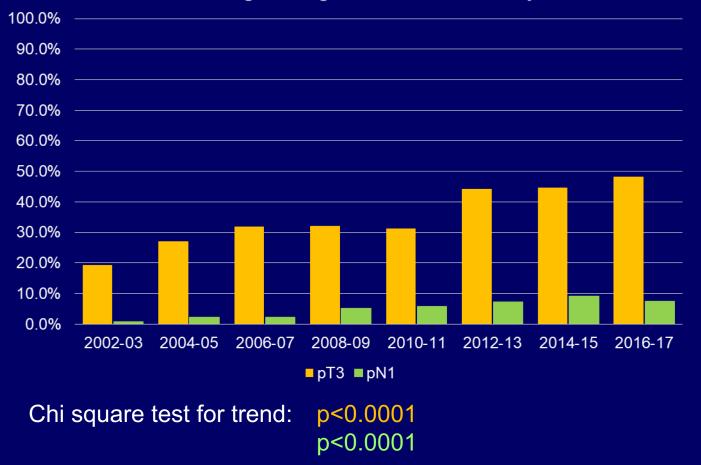


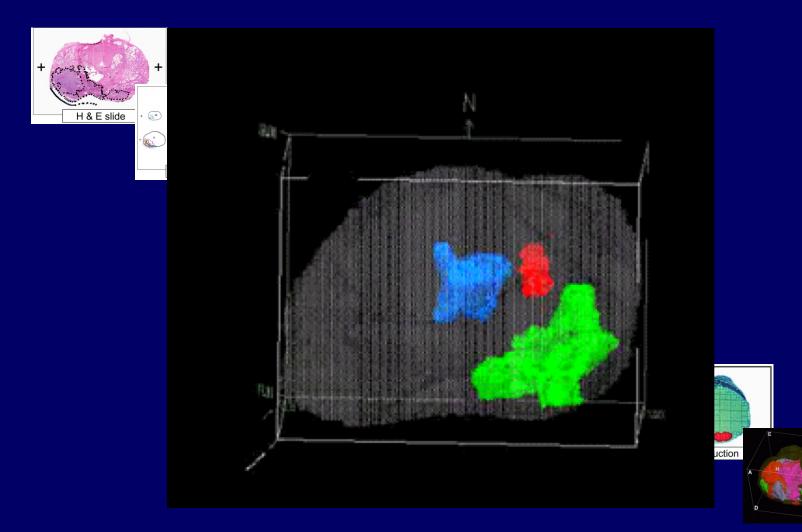
Changes in Tumor Grade Over Last 16 Years


N=1182

Prostate Cancer Grade: Then and Now

Chi-square test for independence p<0.0001


Changes in Tumor Grades Not Proportional When GS≤6 Excluded


Chi-square test for independence p<0.0001

Recent Rise in Advanced Stage Prostate Cancer at Prostatectomy

Pathologic Stage at Prostatectomy

3-Dimensional Reconstruction of Whole-Mounted Prostatectomy Specimens

Multifocality of 293 carcinomas from 151 prostates (< 1994)¹

Tumors/Pt.	No. Pts. (%)	No. Tumors	Mean Tumor Vol. (cc)	
1	66 (43.7)	66	6.52	
2	47 (31.1)	94	1.48	
3	25 (16.6)	75	1.01	
4	8 (5.3)	32	0.59	
5	4 (2.6)	20	0.40	
6	1 (0.7)	6	0.22	
Totals	151 (100)	293 (1.9/pt)	4.46	

Prostate Cancer Database, Univ. of Colorado AMC:

2002-12: 72% multifocal (21.8% ant), 2.7 tumors/pt, Mean tum vol = 2.08 cc 2016-17: 74% multifocal (26.7% ant), 2.4 tumors/pt, Mean tum vol = 3.62 cc

1. Miller GJ, J Urol 152:1709, 1994

Conclusions

- Changes in the clinical management of prostate cancer over the last 16 years have led to changes in the pathological features of tumors undergoing prostatectomy at the Univ. of Colorado:
 - Shift towards higher grade tumors
 - Increased stage (\uparrow pT3, \uparrow pN1)
 - Larger tumor volumes
- Pending:
 - Impact on mortality???

Acknowledgements

- Francisco La Rosa, MD
- Priya Werahera, PhD
- Kathleen Torkko, PhD
- Adrie van Bokhoven, PhD
- Erin Smith
- Phil Faulkner
- Robert Dayton
- David La Rosa
- Joseph La Rosa
- E. David Crawford, MD
- Paul Maroni, MD
- UCD Biorepository Core Facility
- Men's Health Event

