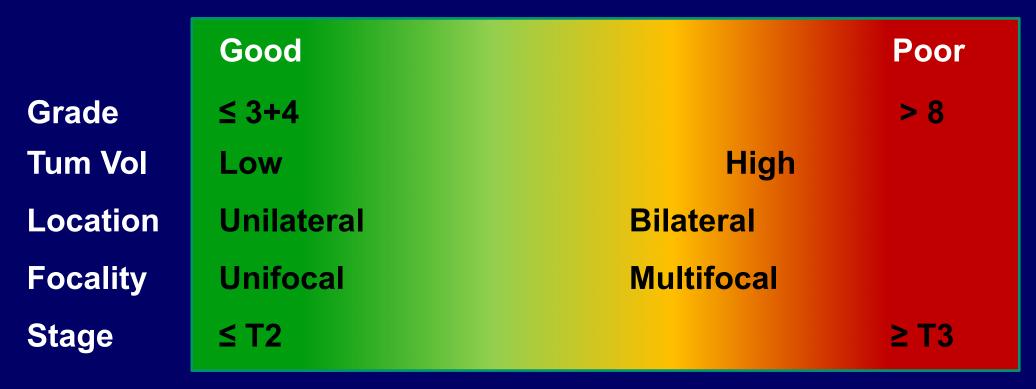
Pathologists Perspective on Focal Therapy: The Role of Mapping Biopsies and Markers

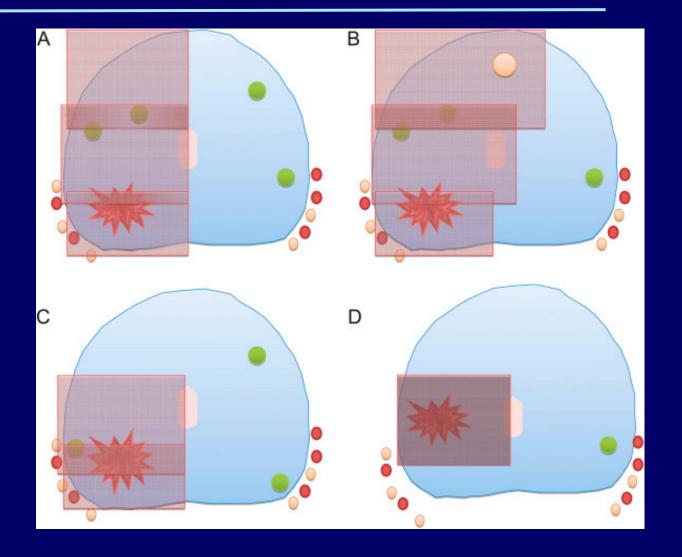

M. Scott Lucia, MD
Professor and Vice Chair of Anatomic Pathology
Chief of Genitourinary and Renal Pathology
Dept. of Pathology
University of Colorado SOM

Disclosures

- MDxHealth

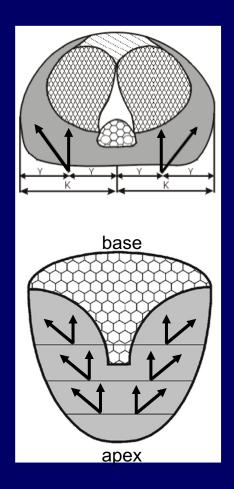
 consultant
- 3DBiopsy shareholder

Identifying the Best Candidates for Targeted Focal Therapy



Other factors:

- Therapeutic modality
- Physician philosophy
 - Cancer cure vs. cancer control
 - Alternative to AS vs. alternative to radical Tx


Focal Ablation Strategies

- A. Hemiablation
- B. Extended ablation
- C. Quadrant ablation
- D. Site specific ablation

Prostate Cancer Detection by TRUS-Guided Transrectal Needle Biopsy

- Cancer sampling is a function of tumor volume: prostate volume
 - Similarly, sampling of high-grade tumor is a function of high-grade component: prostate volume
 - Anterior prostate relatively undersampled
- Biopsy may not sample the highest grade or index lesion
- Biopsy poor staging tool
- Inadequate for precise tumor localization

Risk of Pathologic Upgrading or Locally Advanced Disease in Early Prostate Cancer Patients Based on Biopsy Gleason Score and PSA: A Population-Based Study of Modern Patients*1

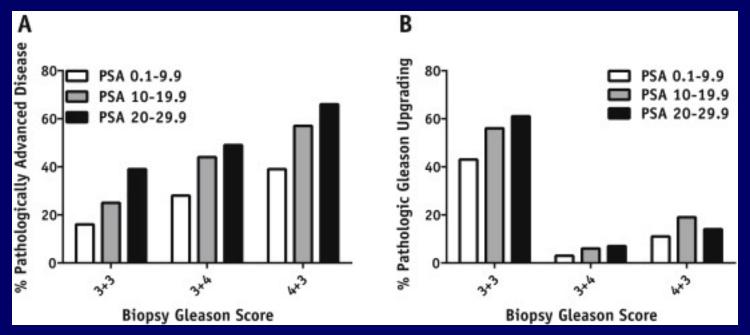
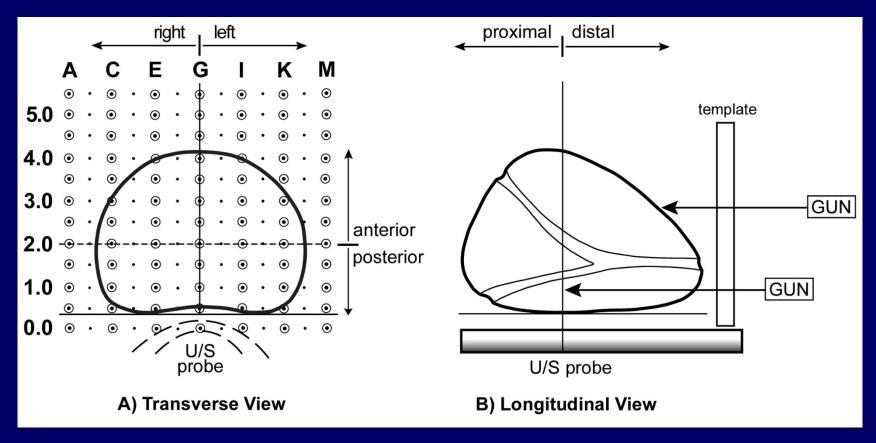


Fig. 1. Percentage of patients who had pathologically advanced disease (A) and Gleason score upgrading (B), stratified by prostate-specific antigen (PSA) concentration and biopsy Gleason score.

*Based on 25,858 patients from the SEER database.

Identifying Prostate Cancers Appropriate for Focal Therapy


Concerns

- How can we accurately assess:
 - tumor grade and aggressiveness?
 - tumor extent (multifocality, volume, location)?
- Once cancer location is known, can we precisely deliver therapy to the target?

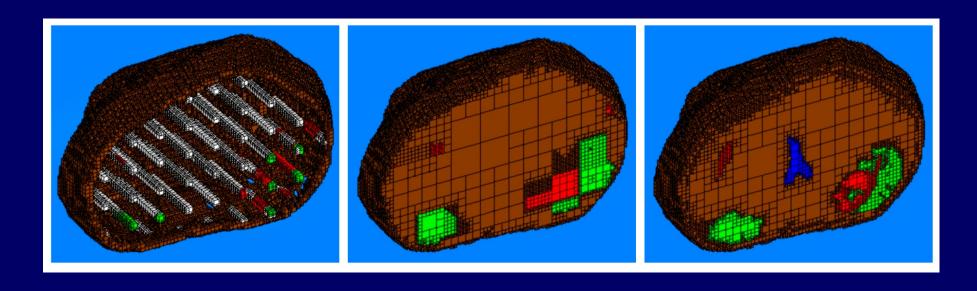
Potential Solutions

Increase precise sampling: transperineal templateguided mapping biopsies (TTMB)

Template-Guided 3D Mapping Biopsies

© BJU International 2005

Playing Battleship

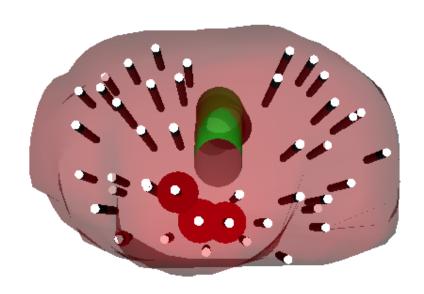


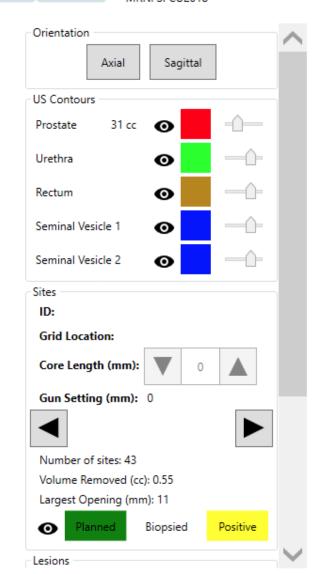
Transperineal Mapping
Biopsy

3D Mapping Biopsy: Reverse-Reconstruction Model

- Saturation grid-biopsy data (left)
- Reverse-reconstruction model (center)
- Actual RRP specimen (right)
- Model error: -15% for Gleason 3+4 tumor (right, 5.1 cc)
 +15% for Gleason 3+3 tumor (left, 0.09 cc)
- Theoretical volume threshold = 0.042 cc

Specimen	Length (cm)	Slide #	Ink	Diagnoses	
2JB	1.4	1	Yellow	Benign prostatic tissue	
2JA	1.0	1	Green	Benign prostatic tissue	
2IB	1.5	1	Blue	Benign prostatic tissue	
2IA	0.5	2	Yellow	Benign prostatic tissue	
2HB	0.8	2	Green	Benign prostatic tissue	
1DA	0.8	2	Blue	Benign prostatic tissue	
1CB	1.6	3	Yellow	Benign prostatic tissue	
1CA	1.0	3	Green	Benign prostatic tissue	
1B	0.1	3	Blue	Benign fibromuscular tissue	
2K	0.3	4	Yellow	Benign prostatic tissue	
1FB	1.4	4	Green	Benign prostatic tissue	
1FA	0.6	4	Blue	Benign prostatic tissue	
1EB	1.5	5	Yellow	Benign prostatic tissue	
1EA	1.5	5	Green	Prostatic adenocarcinoma, Gleason grade 3(95%) + 4(5%),	
				(score=7); involving 3.7mm (35%) of core length; 4mm	
				from inked tip	
1DB	1.8	5	Blue	Benign prostatic tissue	
1IB	1.7	6	Yellow	Benign prostatic tissue	
1IA	1.3	6	Green	Benign prostatic tissue	
1HB	1.4	6	Blue	Benign prostatic tissue	
1HA	1.0	7	Yellow	Benign prostatic tissue	
1G	1.7	7	Green	Benign prostatic tissue	
0E	1.2	7	Blue	Benign prostatic tissue	
0D	1.6	8	Yellow	Prostatic adenocarcinoma, Gleason grade 4+ 4 (score=8);	
				involving 0.7mm (6%) of core length; 9mm from inked tip	
0C	1.0	8	Green	Benign prostatic tissue	
1K	1.5	8	Blue	Prostatic adenocarcinoma, Gleason grade 3+3 (score=6);	
				involving 0.6mm (5%) of core length; 7.8mm from inked	
			44	tip	
<u>1J</u>	0.9	9	Yellow	Benign prostatic tissue	
<u>6I</u>	1.8	9	Green	Benign prostatic tissue	
6H	1.3	9	Blue	Benign prostatic tissue	
6F	1.6	10	Yellow	Benign prostatic tissue	
6EB	2.0	10	Green	Benign fibromuscular tissue	
6EA	1.2	10	Blue	Benign prostatic tissue	



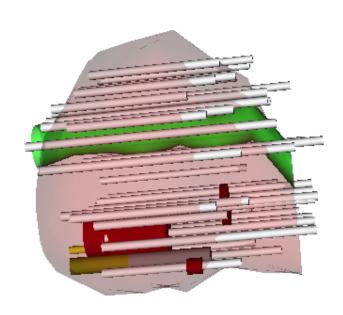


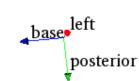
Nelson Stone (admin) Remaining Study Licenses: Unlimited Remaining Export Licenses: Unlimited Patient's Name: Crawford, David MRN: SPCU2018

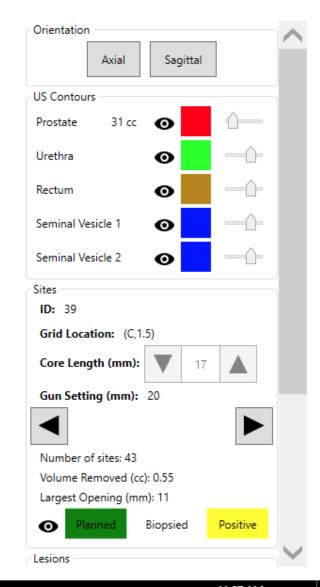
 \times

base left posterior

3DBiopsy 3D Mapping Software version 0.6ALPHA1







Nelson Stone (admin) Remaining Study Licenses: Unlimited Remaining Export Licenses: Unlimited Patient's Name: Crawford, David MRN: SPCU2018

 \times

3DBiopsy 3D Mapping Software version 0.6ALPHA1 × Nelson Stone (admin) Remaining Study Licenses: Unlimited Remaining Export Licenses: Unlimited Patient's Name: Crawford, David 3D Models DICOM Studies Patient Info Contours Reporting Archive Licensing Biopsy MRN: SPCU2018 3DBiopsy™ 31 cc Prostate 0 Image Magnification 456 Urethra 0 121% 100% Fill 27/201806:01:13 PM Rectum 0 € ₽ 12 MHz Seminal Vesicle 1 Template 1.45<1.80 0.4 < 4.0Seminal Vesicle 2 Type 1 Hz 2/32 Hz Contour Thickness Sites ID: 39 80 % Lesions Grid Location: (C,1.5) 70 dB Range \odot Off rmonic Core Length (mm): Gleason Score Site ID Volume (cc) 0 0.024 Gun Setting (mm): 20 3+3 0 3+4 33 0.009 3+4 34 0.244 Go to Largest Opening se Reject 10 35 3+4 0.149 38 0.007 3+4 Number of sites: 43 3+4 41 0.005 Volume Removed (cc): 0.55 4+3 39 0.012 Largest Opening (mm): 11 11:59 AM Type here to search

Comparison of TRUS guided transrectal biopsy and 3D mapping biopsy (n=215)

	TRUS Guided Bx	3DMBx
Median No. biopsy cores (range)	12 (6-23)	56 (8-124)
Median No. positive cores (range)	1 (1-8)	2 (0-19)
No. Gleason score:		
5	1	0
6	155	98
7	24	61
8	0	8
9	0	1
Neg	35	47

46% of tumors upstaged on 3DMBx

Clinical risk stratification of patients diagnosed with prostate cancer by TRUS Bx vs. subsequent transperineal template prostate mapping (TTMP)

Risk stratification	TRUS Bx n, (%)	TTMP n, (%)
Biopsy naïve	47 (12)	0 (0%)
No cancer	75 (19)	67 (17)
Low risk	132 (34)	78 (20)
Intermediate risk	128 (33)	80 (21)
High risk	3 (1)	166 (42)

Low risk = GS $\leq 3+3$, ≤ 3 mm max core positive Intermediate risk = GS 3+4 and/or 4-5 mm max core positive High risk = GS $\geq 4+3$ and/or ≥ 6 mm max core positive

Location and grade of prostate cancer diagnosed by transperineal template-guided mapping biopsy after negative transrectal ultrasound-guided biopsy¹

	No. Prior Biopsies (Count [%])			
Cancer Sites	0	1	2	Total
(A) Association between number of prior biopsies and location of cancer sites (Pearson x ² : P=0.007)				
Anterior only Posterior only Anterior & posterior Total (A) Association between nu	43 (20.7) 21 (10.1) 144 (69.2) 208 (100) mber of prior biops	97 (29.9) 42 (12.9) 186 (57.2) 325 (100) sies and location of C	52 (35.6) 20 (13.7) 74 (50.7) 146 (100) Sleason score ≥ 7 ca	192 (28.3) 83 (12.2) 404 (59.5) 679 (100) Incer (Pearson x ² :
P=0.009)				
Anterior only Posterior only Anterior & posterior Total	10 (7.6) 9 (6.9) 112 (85.5) 131 (100)	36 (20.3) 13 (7.3) 128 (72.3) 177 (100)	22 (24.4) 7 (7.8) 61 (67.8) 90 (100)	68 (17.0) 29 (7.3) 301 (75.6) 398 (100)

Correlation of Transrectal vs. Transperineal Template Biopsy Grade with Whole-Mount Prostatectomy Grade (N=25)

Biopsy Type	Prostatectomy		
	Upgraded	Downgraded	
Transrectal	52%	8%	
Transperineal	12%	16%	

Is transperineal prostate biopsy more accurate than transrectal biopsy in determining final Gleason score and clinical risk category? A comparative analysis¹

- 431 prostatectomy specimens in which PCa was diagnosed by TRUS Bx (mean # cores 14.83, n=283) or TTB (mean # cores 22.14, n=148):
 - 22.3% of tumors diagnosed by TRUS Bx upgraded from GS≤6 to GS≥7 on final pathology vs. 14.2% of tumors diagnosed by TTB (p=0.04)

TRUS Bx = transrectal ultrasound guided biopsy TTB = transperineal template biopsy

Identifying Prostate Cancers Appropriate for Focal Therapy

Concerns

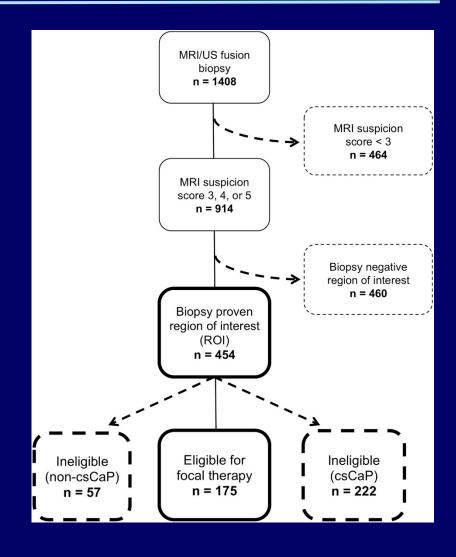
- How can we accurately assess:
 - tumor grade and aggressiveness?
 - tumor extent (multifocality, volume, location)?
- Once cancer location is known, can we precisely deliver therapy to the target?

Potential Solutions

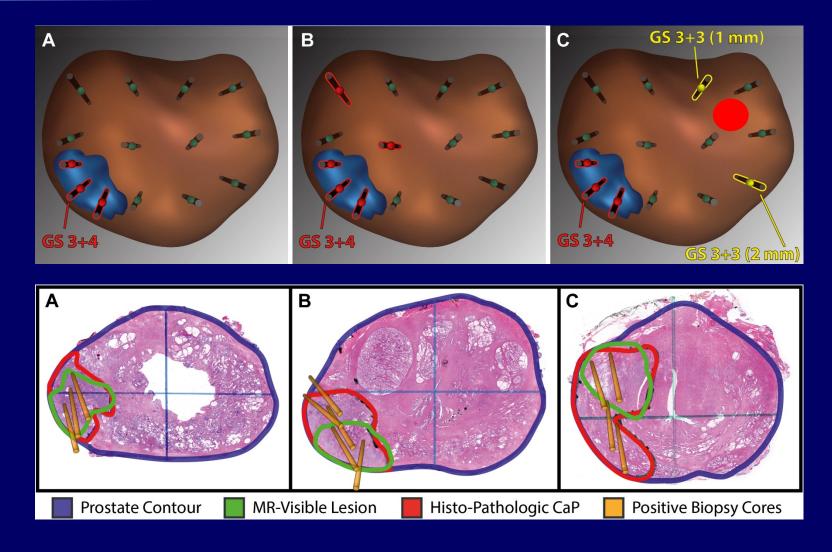
- Increase precise sampling: transperineal templateguided mapping biopsies (TTMB)
- Add imaging

Detection of Prostate Cancer by mpMRI Compared with Prostatectomy Specimen

	Thompson et al 2014 ¹	Russo et al 2015 ²	Radtke et al 2016 ³
N Field Strength Endorectal coil Def. significant lesion MRI Def. csPCa	48 1.5/3 T PI-RADS ≥ 3 GS≥7 or GS6≥5 mm	115 1.5T + Largest lesion	120 3T PI-RADS≥2 1)EPE, 2)
Sens/Spec NPV/PPV	98/43 75/91	(mean=1.3mL) 90.4/- NR	highest GS, 3) largest tumor 85/- 78/49


- 1. Thompson J et al. Multiparametric magnetic resonance imaging guided diagnostic biopsy detects significant prostate cancer and could reduce unnecessary biopsies and over detection: a prospective study. *J Urol* 2014;192:67-74.
- 2. Russo F et al. Detection of prostate cancer index lesions with multiparametric magnetic resonance imaging (mpMRI) using whole-mount histological sections as the reference standard. *BJU Int* 2016;118:84-94.
- 3. Radtke JP et al. Multiparametric magnetic resonance imaging (MRI) amd MRI-transrectal ultrasound fusion biopsy for index tumor detection: correlation with radical prostatectomy specimen. *Eur Urol* 2016;70:846-53.

Detection of Prostate Cancer by mpMRI Compared with Template-Guided Mapping Biopsy


- Mortezavi A., et al 2018:¹
 - 415 pts with mpMRI (3T, -ERC) followed by TTMB
 - Detection of csPCa (GS ≥ 3+4)
 - 124 with neg mpMRI \rightarrow 32 (25.8%) csPCA detected on TTMB
 - 291 with Likert ≥ 3:
 - 129 (44.3%) csPCa detected on fusion-directed biopsy
 - 176 (60.5%) csPCa detected on TTMB
 - 187 (64.3%) csPCa detected when combined
- Sivaraman A, et al. 2015:²
 - TTMB (Barzells) identified tumor in 27/74 (36%), men with prior negative MRI-TRUS Bx
 - 19/27 (70.4%) significant (GS≥7 and/or max pos core length ≥4mm)
 - 8/27 (29.6%) GS≥7
 - 18/27 (66.7%) anterior tumors
 - 1. Mortezavi A, et al. Diagnostic accuracy of mpMRI and fusion-guided targeted biopsy evaluated by transperitoneal saturation prostate biopsy for the detection and characterization of prostate cancer. J Urol 2018 doi: 10.1016/j.jurol.2018.02.067.
 - 2. Sivaraman A, et al. Clinical utility of transperineal template-guided mapping biopsy of the prostate after negative magnetic resonance imaging-guided transrectal biopsy. *Urol Oncol* 2015;33:329.e7-329.e11.

Focal therapy eligibility determined by magnetic resonance imaging/ ultrasound fusion biopsy¹

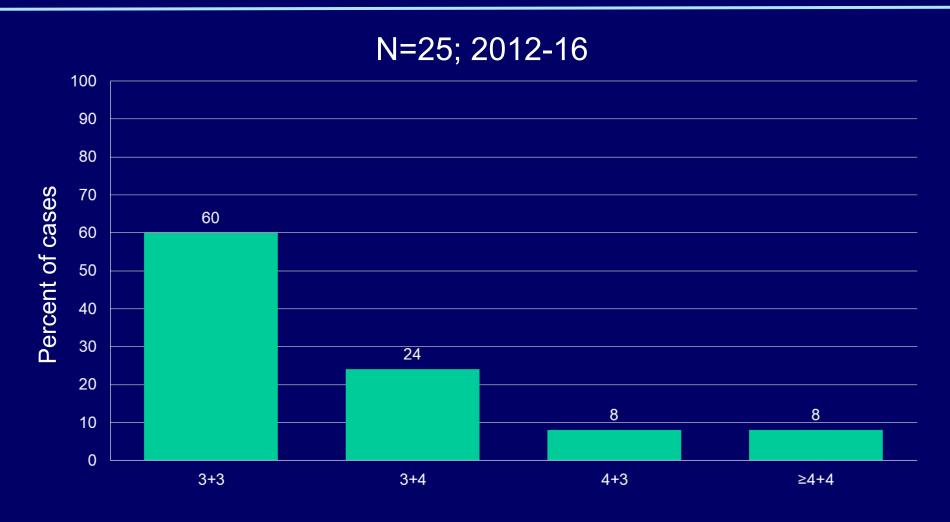
- 454 men with PI-RADS ≥3 lesions on mpMRI (3T,ERC) & positive MRI/TRUS fusion Bx + 12-core systematic Bx
- FT eligibility assessed for 3 ablative strategies based on location of positive Bxs
 - Site specific
 - Quadrant
 - Hemigland

Focal therapy eligibility determined by magnetic resonance imaging/ ultrasound fusion biopsy¹

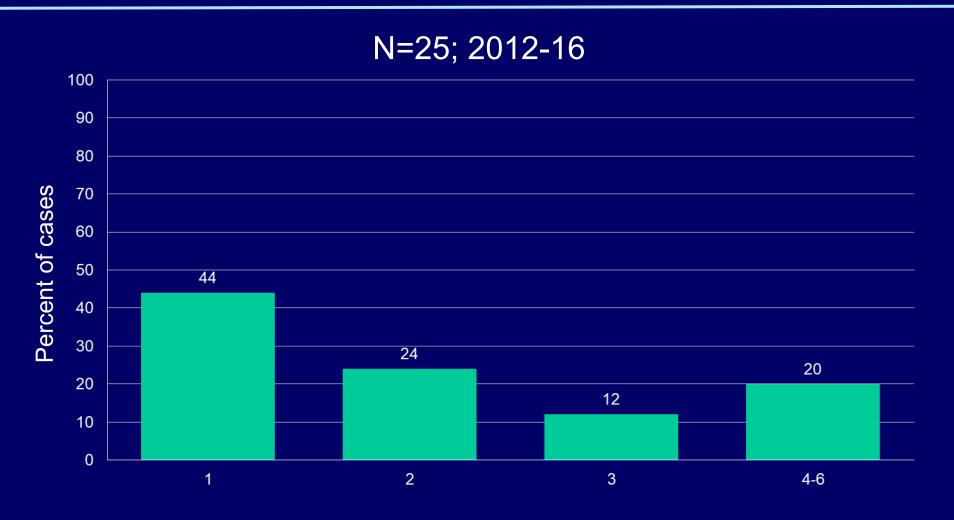
Multifocal Prostate Cancer: Gleason Grade of Secondary (Non-Index) Tumor Foci < 0.5 cc

- UC database of whole-mount prostatectomy cases that underwent 3D-reconstruction (N=200, 2009-2016)
 - 75% 3+3 (Grade group I)
 - 15% 3+4 (Grade group II)
 - 10% ≥ 4+3 (≥ Grade group III)

A single-center evaluation of the diagnostic accuracy of multiparametric MRI against transperineal prostate mapping biopsy: an analysis of men with benign histology and insignificant cancer following TRUS biopsy¹


- 426 pts with negative or low risk prostate cancer on TRUS biopsy followed by mpMRI (1.5T)
- Subsequent TTMB as reference
- mpMRI with PI-RADS ≥3 had AUC 0.754 for GS ≥ 4+3 tumor on TTMB
 - Sens = 87
 - Spec = 55.3

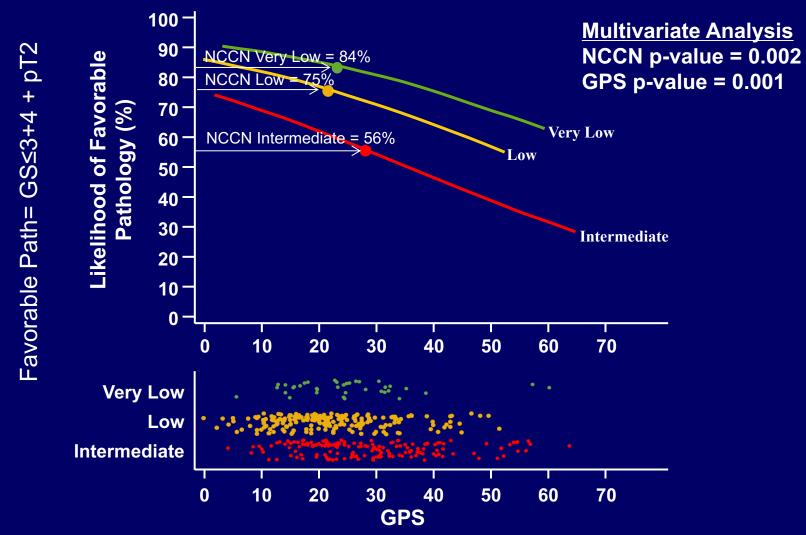
Monitoring the Efficacy of TFT


- Monitor as active surveillance
 - PSA
 - Follow-up biopsy (12 core)
- mpMRI, MRI/TRUS fusion biopsy^{1,2}

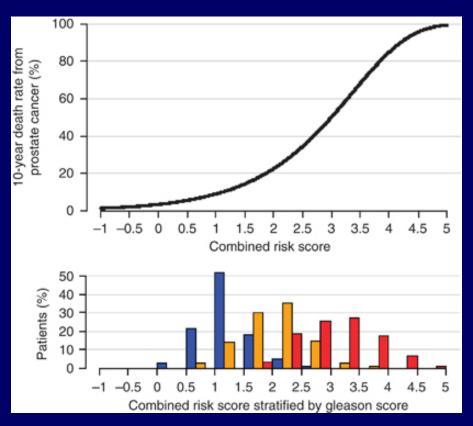
- 1. Scheltema MJ, et al. Preliminary diagnostic accuracy of multiparametric magnetice resonance imaging to detect residual cancer following focal therapy with irreversible electroporation. *Eur Urol Focus* 2017 doi: 10.1016/j.euf.2017.10.007.
- 2. Gaur S and Turkbey, B. Prostate MR imaging for posttreatment evaluation and recurrence. Radiol Clin N Am 2018;56:263-75.

Grade of residual prostate cancer detected on follow-up monitoring biopsy after TFT

No. of positive cores of residual prostate cancer detected on follow-up monitoring biopsy after TFT



Monitoring the Efficacy of TFT


- Monitor as active surveillance
 - PSA
 - Follow-up biopsy (12 core)
- mpMRI, MRI/TRUS fusion biopsy^{1,2}
- Role of Biomarkers?
 - Indication for rebiopsy?
 - SelectMDx, 4K, Phi?
 - If PCa detected on follow-up biopsy?
 - Cell cycle progression [CCP] score (Prolaris®, Myriad Genetics)
 - Prostate Genomic Score RT-PCR expression assay (OncotypeDX®, Genomic Health)
- 1. Scheltema MJ, et al. Preliminary diagnostic accuracy of multiparametric magnetice resonance imaging to detect residual cancer following focal therapy with irreversible electroporation. *Eur Urol Focus* 2017 doi: 10.1016/j.euf.2017.10.007.
- 2. Gaur S and Turkbey, B. Prostate MR imaging for posttreatment evaluation and recurrence. *Radiol Clin N Am* 2018;56:263-75.

UCSF Validation Study of GPS

Improved Risk Discrimination with Addition of GPS to NCCN in 395 Men with Very Low-Intermediate Risk Prostate Cancer on Biopsy

Prognostic value of a cell cycle progression signature* for prostate cancer death in a conservatively managed needle biopsy cohort¹

Combined risk score: derived from CCP+GS+PSA Blue bars=GS<7, yellow bars=GS7, red bars=GS>7

Monitoring the Efficacy of TFT

- Monitor as active surveillance
 - PSA
 - Follow-up biopsy (12 core)
- mpMRI, MRI/TRUS fusion biopsy^{1,2}
- Role of Biomarkers?
 - Indication for rebiopsy
 - SelectMDx, 4K,
 - If PCa detected on
 - Cell cycle progr
 - Prostate Genomic Genomic Health)

Level 1 Evidence

B, Myriad Genetics)
on assay (OncotypeDX®,

- 1. Scheltema MJ, et al. Preliminary diagnostic accuracy of multiparametric magnetice resonance imaging to detect residual cancer following focal therapy with irreversible electroporation. *Eur Urol Focus* 2017 doi: 10.1016/j.euf.2017.10.007.
- 2. Gaur S and Turkbey, B. Prostate MR imaging for posttreatment evaluation and recurrence. Radiol Clin N Am 2018;56:263-75.

Conclusions

- Pathological features are important for appropriate patient selection for focal therapy
 - Grade
 - Volume
 - Location
- Traditional transrectal biopsy schemes are inaccurate
- Transperineal mapping biopsies offer improved pathological accuracy
- mpMRI + MRI/TRUS fusion biopsy may be useful for determining eligibility for focal therapy in some patients
 - May underestimate tumor burden
- Role of biomarkers in patient selection and monitoring yet to be determined