Hypofractionation and SBRT for Prostate Cancer

Seth Blacksburg, MD, MBA Associate Director, Dept Radiation Oncology Medical Director, NYCyberknife

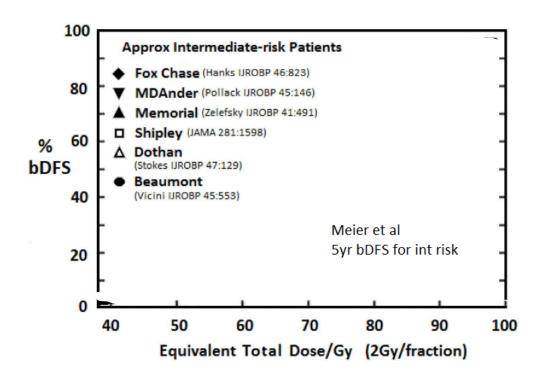
> NYU Winthrop Hospital

Disclosures

Accuray, Advisory Board

Agenda

- Rationale for Hypofx for Prostate Ca
- Hypofx Prospective and RCTs
- SBRT
 - Virtual HDR? How does it compare?
 - Retrospective Series: Biochemical Control
 - QOL Series, Cost Effectiveness Models
- ASTRO/NCCN and RCTs

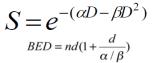

Dose Escalation, 4 RCT + 5 Retrospective

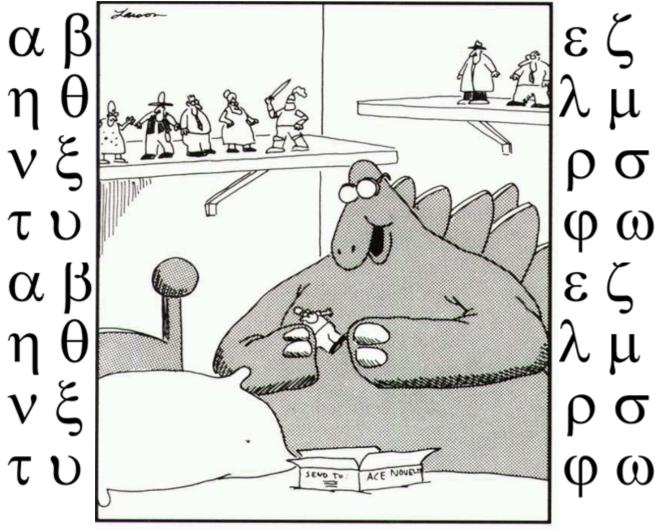
- Improved bDFS \rightarrow cancer control
- Toxicity limited with
 - better treatment delivery (3DCRT \rightarrow IMRT) and targeting (IMRT \rightarrow IGRT)

			1	Dose (Gy))					bNED (%)			
Study	Randomized	No. of patients	Low (median)	Int. (median)	High (median)	Follow-up Median (y)	Failure rate reported (y)		Risk group			High dose	bNED definition
Zelefsky 1998	_	530	70.2		75.6	3	5	KM KM KM	Low Int. High	84 55 19		95 79 53	ASTRO
Hanks 2000 [‡]	_	618	70 (<10 f)		73 (<10 f)	4.4	5	KM	<10 f <10 unf 10–19.9 f	77 70		89 92 86	ASTRO
			73 (rest)		78 (rest)				10–19.9 ≥20 f ≥20 unf	51 23 29		82 63 26	
Pollack 2000	—	1127	66	70	78	4.3	4	KM	Low Inthigh	73 31	85 51	84 68	ASTRO
Lyons 2000	—	738	68.4		74	3.4	5	HR KM	Low Inthigh	81 41		98 75	ASTRO
Zietman 2005	+	393	70.2		79.2	5	5	KM	Low Inthigh	60 63		81 80	ASTRO
Kupelian 2005	—	1325	68.4		75.6	5.8	5	KM point KM KM point	Low Int. High	75 63 38		79 72 46	ASTRO
Peeters 2006	+	664	68		78	4.2	5	HR	Low Int. High	88 64 48		84 79 66	ASTRO
Dearnaley 2007	+	843	64		74	5	5	HR	Low Int. High	40 79 70 43		85 79 57	PSA >2 And PSA >nadir +
Kuban 2008	+	301	70		78	8.7	8	KM	Low Int. High	63 76 26		88 86 63	50% Phoenix

Diez et al, IJROBP 2010

Conceptualized model




$$S = e^{-(\alpha D - \beta D^2)}$$

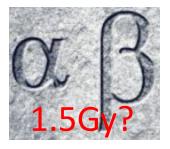
BED = nd(1 + $\frac{d}{\alpha/\beta}$)

- Cell Survival
 - Linear Quadratic model
 - Sigmoidal curve

- Historically, increase dose by increasing the *number* of fractions
 - With low dose per fraction \rightarrow widen therapeutic index
 - use 1.8-2.0Gy/fx
 - Because of α and β

Radiobiologic Rationale

"Oh, boy! The 'Nerd'! ... Now my collection's complete!"


Radiobiologic Rationale

 $S = e^{-(\alpha D - \beta D^2)}$

BED = nd(1 +

- Dose response of tumors/tissue to radiation $\rightarrow \alpha/\beta$
 - High α/β (10) = little sensitivity to dose/fx
 - ie: most tumors, early responding normal tissues (mucosa, skin)
 - Low α/β (<5Gy) = greater sensitivity to dose/fraction
 - ie: late responding tissues
- Fractionation: use of many fractions of low dose radiation
 - Since most tumors not sensitive to fraction size whereas normal tissues are
 - Tumor control while minimizing long term toxicity
- Prostate cancer cells diff from most epithelial tumors
 - Lower α/β (~1.5)= higher degree of sensitivity to dose/fraction
 - Advantage of prostate cancer's unique radiobiology
 - Deliver fewer fractions with a larger dose
 - Increase BED to tumor and not normal tissues
 - Enhance Therapeutic ratio

Delivery	Prostate Cancer $(\alpha/\beta = 1.5Gy)$	Equiv Dose in 1.8Gy/fx	Late Responding Tissue $(\alpha/\beta = 3Gy)$	Equiv Dose in 1.8Gy/fx
IMRT: 81Gy, 1.8Gy/fx x 45 → 5-10mm expansion	178.2Gy	81Gy	129.6Gy	81Gy
SBRT: 35Gy, 7.0Gy/fx x 5 \rightarrow 3-5mm expansion	198.3Gy	90.2Gy	116.7Gy	72.9Gy

Summary of α/β values

Ref	α/β (Gy)	95% Confidence interval
Brenner and Hall [8]	1.5	[0.8,2.2]
Arcangeli 2010	-0.45	[-1.31, 0.41]*
Leborgne 2011[10]	1.86	[0.7, 5.1]
Lukka 2005[11]	2.02	[-1.03, 5.07]*
Valdagni 2005	7.44	[-13.97, 28.86]*
Yeoh 2011[12]	0.13	[-1.06, 1.31]*
Vogelius 2013 [13]	-0.07	[-0.73 - 0.59]
Williams 2007 [14]	2.6	[0.9, 4.8]
Fowler 2001 [15]	1.49	[1.25, 1.76]
Brenner 2002 [16]	1.2	[0.03, 4.1]

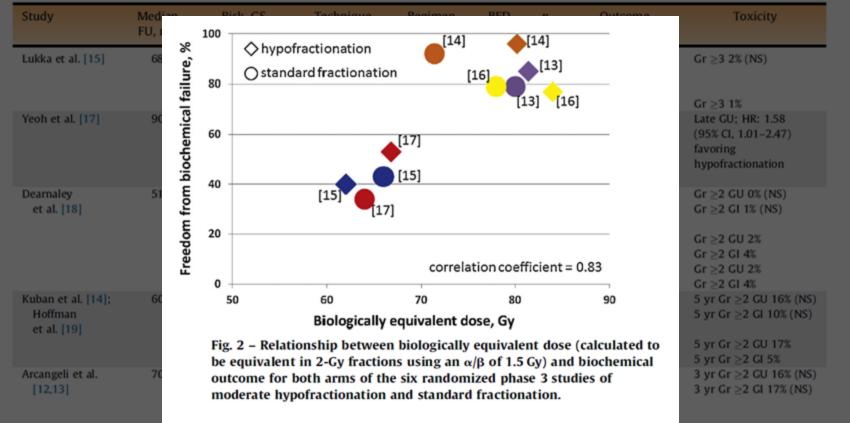
(*Taken from Vogelius et al. [13]).

Clinical results from various treatment modalities support the hypothesis of a low α/β ratio. Shown are the biologically equivalent doses at 1.8 Gy per
fraction for α/β ratios of 10, 3 and 1.5 Gy.

Study	Treatment	$\begin{array}{c} \text{BED} \\ \alpha/\beta = 10 \text{ Gy} \end{array}$	$\begin{array}{c} \text{BED} \\ \alpha/\beta = 3 \text{ Gy} \end{array}$	BED α/β = 1.5 Gy	Biochemical Control Rate
Kupelian et al. (14)	IMRT, 70 Gy in 28 fractions	72 Gy	81 Gy	84 Gy	95% for low-risk; 85% for interme- diate-risk patients at 7-years
Cahlon et al. (21)	IMRT, 86.4 Gy in 48 fractions	86.4 Gy	86.4 Gy	86.4 Gy	98%, 85% and 70% for low-, inter- mediate-, and high-risk patients at 5-years
Martinez et al. (22)	HDR, 38 Gy in 4 fractions or 42 Gy in 6 fractions	63 Gy	97 Gy	125 Gy	91% at 5-years
Demanes et al. (23)	HDR + EBRT, range of doses	58-85 Gy	70-95 Gy	87-120 Gy	87% and 69% for intermediate- & high-risk patients at 10-years
King et al. (8)	SBRT, 36.25 Gy in 5 fractions	52 Gy	78 Gy	96 Gy	100% at 33 months
Katz et al. (10)	SBRT, 35 Gy in 5 fractions	50 Gy	72 Gy	92 Gy	100% at 30 months
Katz <i>et al.</i> (38)	EBRT, 45 Gy in 25 frac- tions, plus SBRT 18-21 Gy in 3 fractions	69-76 Gy	77-89 Gy	88-98 Gy	92.5% for intermediate-risk 79% for high-risk

Hypofx and SBRT

- Hypofractionated Radiation
 - Early stage breast cancer
 - Melanoma
- SBRT
 - Early stage NSCLC
 - CNS
 - Brain mets→ SRS/SBRT→ Standard option
 - Meningioma
 - Adenomas
 - Pancreatic cancer
 - Colorectal oligometastatic hepatic mets


Benefits/Risks of Hypofx

- Benefits
 - Better access to care
 - Shorter course \rightarrow improved compliance
 - More cost-effective
 - Higher BED \rightarrow widen therapeutic index
 - Phase 3 Data is Matur_(e)ing
- Downside
 - Increased reliance on planning and tx technology to deliver high doses accurately and safely
 - Machine variability
 - long-term toxicity continues to evolve

Agenda

- Rationale for Hypofx for Prostate Ca
- Hypofx Prospective and RCTs
- SBRT
 - Virtual HDR? How does it compare?
 - Retrospective Series: Biochemical Control
 - QOL Series, Cost Effectiveness Models
- ASTRO/NCCN and RCTs

Prospective trials of hypo-fx

moderate hypofx→ predominantly low and int risk dz
similar biochem control and late grade 2 + toxicities

5 yr Gr ≥2 GI 9%

Koontz et al, EAU, 2015 Review

RCT's for Hypo-fx

ASTRO: 2015→ Present

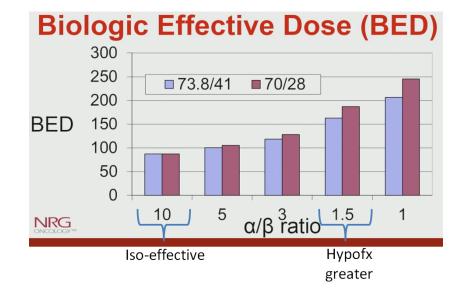
Study	'Longer' Arm	'Shorter' Arm	Efficacy at 5 years	Late Toxicity
СННіР	37fx/2.0Gy	20fx/3.0Gy	Similar	Similar
PROFIT	39fx/2.0Gy	20fx/3.0Gy	Similar	Similar
NRG 0415	41fx/1.8Gy	28fx/2.5Gy	Similar	Small↑ GU/GI
HYPRO	39fx/2.0 Gy	19fx/ <u>3.4Gy</u>	Similar	↑GU

2016 ASTRO update

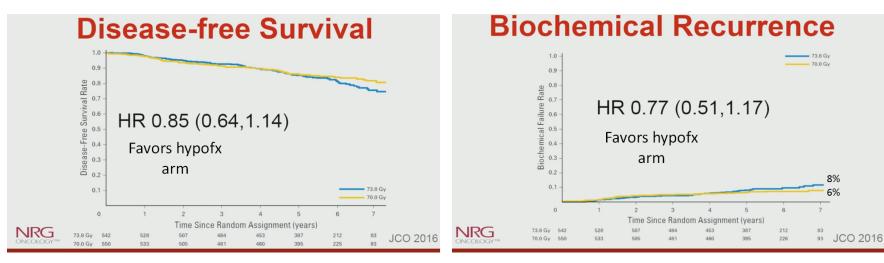
ENHANCING ALUE

RTOG 0415

A PHASE III RANDOMIZED STUDY OF HYPOFRACTIONATED 3D-CRT/IMRT VERSUS CONVENTIONALLY FRACTIONATED 3D-CRT/IMRT IN PATIENTS WITH FAVORABLE-RISK PROSTATE CANCER


SCHEMA

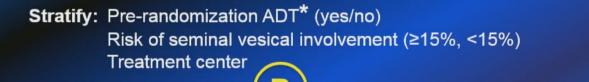
	Gleason Score		
	 Gleason 2-4 	R	
S	Gleason 5-6	Α	Arm
Т		N	3D-CR
R		D	
Α	PSA	0	
Т	1. < 4 ng/mL	M	Arm
1	4- < 10 ng/mL	- I	3D-CI
F		Z	
Y	Radiation Modality	E	
	1. 3D-CRT		
	2. IMRT		


Arm 1 (Minimum PTV prescription) 3D-CRT or IMRT: 73.8 Gy in 41 fractions

Arm 2 (Minimum PTV prescription)

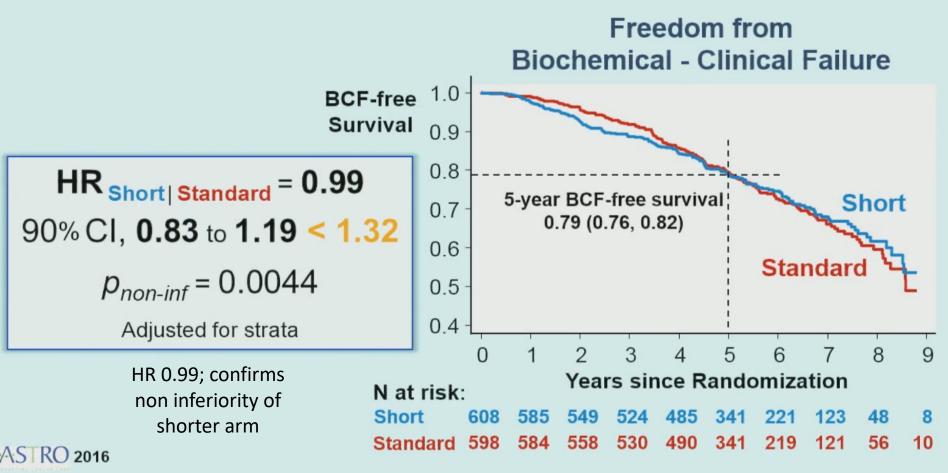
3D-CRT or IMRT: 70 Gy in 28 fractions

Median FU 5.8yrs


PROFIT Trial, PMH

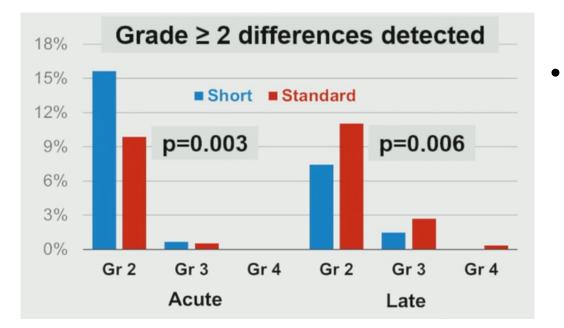
A randomized trial of a shorter radiation fractionation schedule for the treatment of localized prostate cancer OCOG/TROG PROstate Fractionated Irradiation Trial

Characteristic	Short n=608	Standard n=598
Age, median (range)	72 (48-87)	71 (50-88)
PSA		
< 5	17%	19%
5 to 10	50%	51%
10.1 to 20	33%	30%
Gleason Score		
3 + 3	9%	9%
3 + 4	63%	64%
4 + 3	28%	27%
Clinical Stage		
T1a, T1b	<1%	<1%
T1c	54%	52%
T2a	27%	27%
T2b	12%	15%
T2c	7%	6%


- T_{1-2a} Gleason ≤ 6 PSA 10.1 20
- T_{2b-2c} Gleason ≤ 6 PSA ≤ 20
- T_{1-2} Gleason = 7 PSA \leq 20

60Gy in 20 fractions 5 days/week for 4 weeks Short (n = 608) **78Gy in 39 fractions** 5 days/week for 8 weeks **Standard** (n = 598)

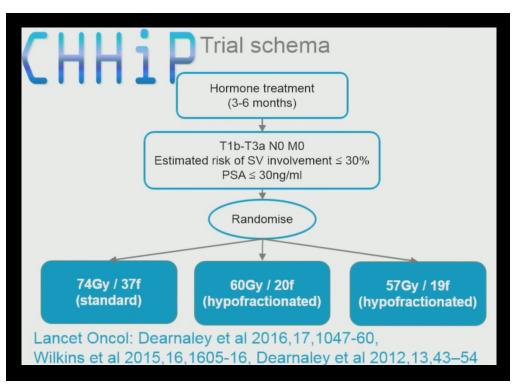
Median FU 6yrs


PROFIT Trial, PMH Results: BCF

PROFIT Trial, PMH

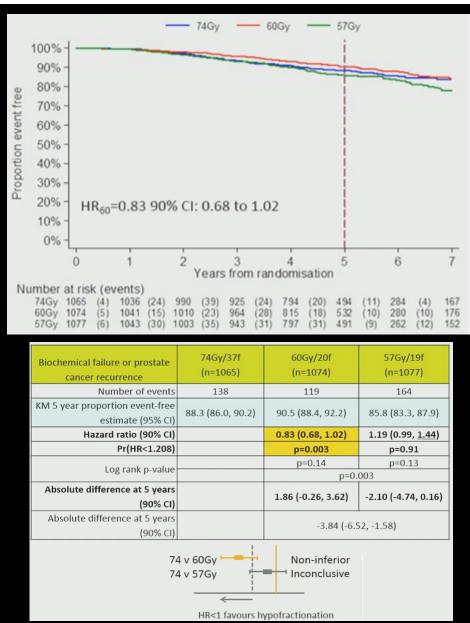
Туре	Short n=608	Standard n=598	P-value
GU	13 (2.1%)	18 (3.0%)	0.33
GI	9 (1.5%)	17 (2.8%)	0.10
GU or GI	22 (3.6%)	32 (5.4%)	0.14

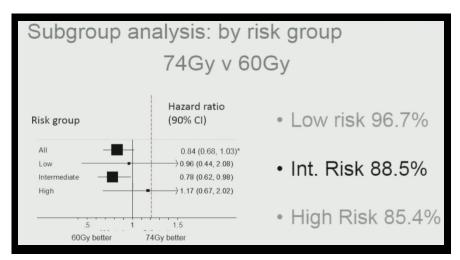
- No diff in Late GR3+ Toxicity
- trend favors shorter arm

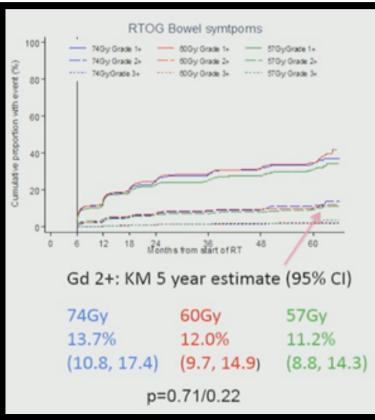

- Overall GI Toxicity
 - higher Acute Gr2
 - less Late Gr2

PROFIT Trial, PMH

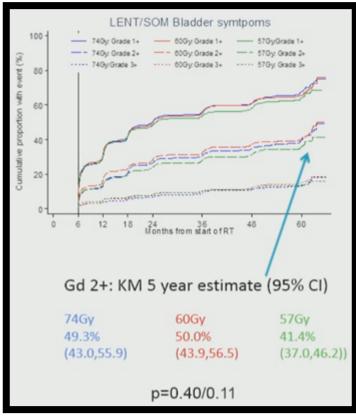
Conclusions


 Based on patient convenience and cost, the shorter RT regimen should be considered as a new standard for intermediate risk prostate cancer.


ASTRO 2016


UK RCT 3diff dose levels

• mostly Int risk dz, but allowed high risk dz



Late Gr2+ Rectal

Late Gr2+ Bladder

Conclusions

- With a median follow up of 62 months, 60Gy in 20 fractions is noninferior to 74Gy in 37 fractions, with no statistically significant differences in late toxicity
- Modest hypofractionation using 60Gy/20f using high quality RT techniques can be recommended as a new standard of care

Change in Fractionation Schedule for Prostate Cancer at Royal Marsden Hospital 2012-2016 **Prostate Fractionations** 100.00 90.00 80.00 70.00 60.00 **%**37# 50.00 8 % 19# 40.00 ■ % 20# 30.00 20.00 10.00 0.00 2012 2013 2016 2014 2015

Agenda

- Rationale for Hypofx for Prostate Ca
- Hypofx Prospective and RCTs
- SBRT
 - Virtual HDR? How does it compare?
 - Retrospective Series: Biochemical Control
 - QOL Series, Cost Effectiveness Models
- ASTRO/NCCN and RCTs
- NYU-Winthrop Hospital

VOLUME 33 · NUMBER 9 · MARCH 20 2015

JOURNAL OF CLINICAL ONCOLOGY

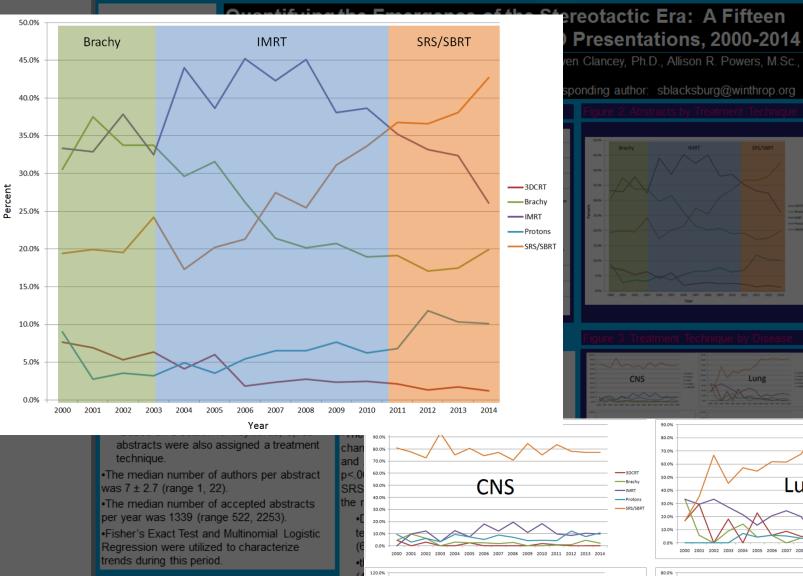
COMMENTS AND CONTROVERSIES

Brachytherapy: Where Has It Gone?

Daniel G. Petereit, *Rapid City Regional Cancer Center, Rapid City, SD* Steven J. Frank, *University of Texas MD Anderson Cancer Center, Houston, TX*

Akila N. Viswanathan, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA Beth Erickson, Medical College of Wisconsin, Milwaukee, WI

Patricia Eifel, University of Texas MD Anderson Cancer Center, Houston, TX


Paul L. Nguyen, Brigham and Women's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA David E. Wazer, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, and Rhode Island Hospital, The Alpert Medical School of Brown University, Providence, RI

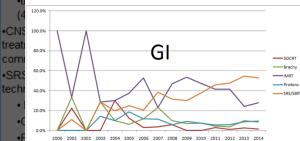
CyberKnife is the biggest advance in prostate cancer treatment in a decade. And only one place in Manhattan has it: NYCyberKnife.

SBRT As Historical Trend

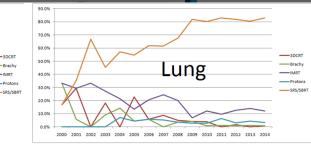
•The number of accepted abstracts increased

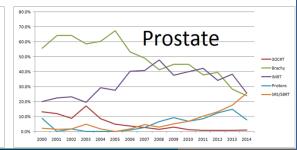
during the course of inquiry, with 6,794 from

2000-2007 and 13,082 from 2008-2014.


There was an increase in presentations

p<.0001) and Lung malignancy (9.2% vs.


presentations related to Prostate cancer

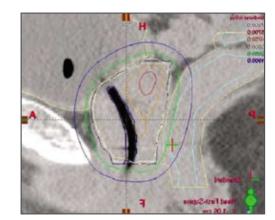

12.6%, p<.0001) and a decrease in

related to Gastrointestinal (8.4% vs. 10.7%,

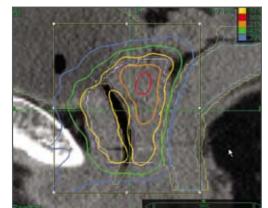
SBRT

Brachy LDR HDR

Fractionated RT Hypo-fx RT SBRT


DiffusiorKiofsTrephnology

AMERICAN BRACHYTHERAPY SOCIETY PROSTATE HIGH-DOSE RATE TASK GROUP I-Chow Hsu, MD, Yoshiya Yamada MD, Eric Vigneault MD, Jean Pouliot, PhD August, 2008


HDR?

Prescription Doses:

Monotherapy 10.5 Gy x 3 8.5-9.5 Gy x 4 6.0-7.5 Gy x 6

<u>Arm 1</u> 36.25 Gy in 5 fractions of 7.25 Gy over two and a half weeks (in 15-17 days)*

SBRT as "virtual" HDR?

- Rapid Dose Fall off
- Capable of Delivering Heterogeneous Tx Plans
- Cost Effective relative to IMRT
- Compared to LDR—and like HDR—more forgiving of
 - larger prostate size (>60cc)
 - Higher baseline IPSS
 - History of TURP
- Easier to Teach to Residents?

Sean Collins, MD 2016 ASTRO

HDR and Hypofx

TABLE 1. Clinical Outcomes of HDR and EBRT Moderate Hypofractionation

Reference	Method	No. of Patients	Risk Group	Total Dose, Gy	No. of Fractions	Median Follow-up, y	bPFS, %	Late ≥G3 GU Toxicity	Late ≥G3 GI Toxicity
Hauswald et al., ³ 2016	HDR	448	Low-intermediate	42-43.5	6	6.5	97.8	4.9%	0%
Martinez et al.,8 2010	HDR	248	Low-intermediate	38	4	4.8	91	9%	0.5%
Corner et al.,9 2008	HDR	110	Low-high	31.5-36	3–4	2.5	100	2%	0%
Lee et al., 2016	Hypofx	554	Low	70	28	5.9	81.8 (DFS)	6.4%	4.6%
Kupelian et al., ⁵ 2007	Hypofx	770	Low-high	70	28	3.7	82 (95, 85, 68)	5%	1%
Livsey et al., ⁶ 2003	Hypofx	705	Low-high	50	16	4.0	82, 56, 39*	9%	5%

Lischalk et al. The Cancer Journal • Volume 22, Number 4, July/August 2016

"SBRT" doses are not new!

"The dose is the dose" Jon Haas, M.D.

1.0

0.8

0.4

0.2

0.0

Numbers at risk

CSS 79

0S

MFS

79

79

bNED

Ó

79

High-Dose-Rate Brachytherapy as Monotherapy for Intermediate- and High-Risk Prostate Cancer: Clinical Results for a Median 8-Year Follow-Up

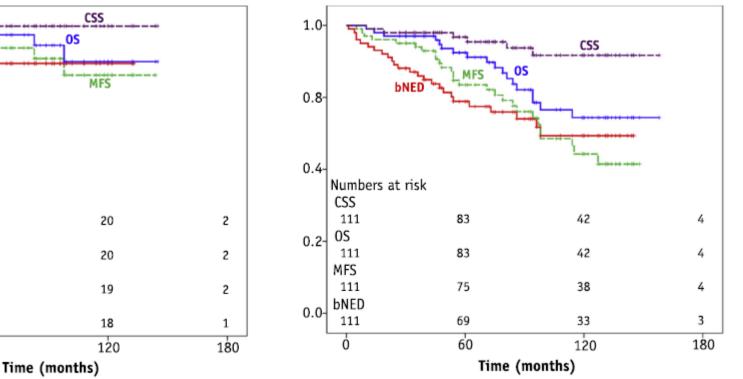
Yasuo Yoshioka, MD,* Osamu Suzuki, MD,* Fumiaki Isohashi, MD,* Yuji Seo, MD, * Hirofumi Okubo, MD, * Hiroko Yamaguchi, MD, * Michio Oda, MS,* Yuki Otani, PhD,* Iori Sumida, PhD,* Motohide Uemura, MD,[†] Kazutoshi Fujita, MD,[†] Akira Nagahara, MD,[†] Takeshi Ujike, MD,[†] Atsunari Kawashima, MD,[†] Ken Yoshida, MD,[‡] Hideya Yamazaki, MD,[§] Norio Nonomura, MD,[†] and Kazuhiko Ogawa, MD*

Departments of *Radiation Oncology and [†]Urology, Osaka University Graduate School of Medicine, Osaka, Japan; [‡]Department of Radiation Oncology, Osaka Medical College, Osaka, Japan; and ^SDepartment of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan

54

54

52


50

60

Received Mar 18, 2015, and in revised form May 11, 2015. Accepted for publication May 26, 2015.

79 Int Risk Dz (35 w ADT) 111 High Risk Dz (104 w ADT) 6Gy x 8, 6Gy x 6, 6.5Gy x 7

0S

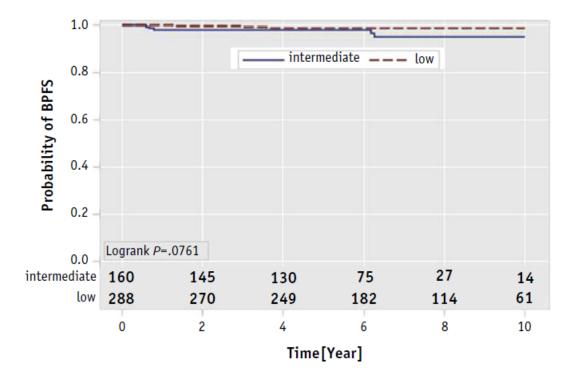
national Iournal o

Radiation Oncology biology • physics

Clinical Investigation

High-Dose-Rate Monotherapy for Localized Prostate Cancer: 10-Year Results

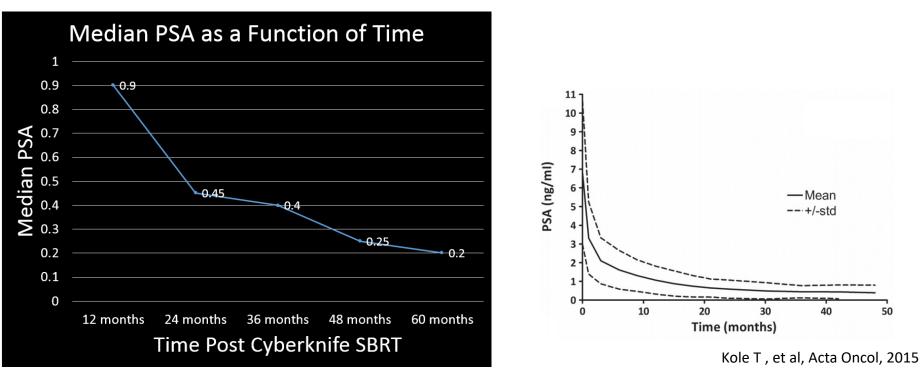
Henrik Hauswald, MD, Mitchell R. Kamrava, MD, Julia M. Fallon, BA, Pin-Chieh Wang, PhD, Sang-June Park, PhD, Thanh Van, BS, Lalaine Borja, PA-C, Michael L. Steinberg, MD, and D. Jeffrey Demanes, MD


International Journal of Radiation Oncology

biology • physics

California Endocurietherapy at UCLA, Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California

Received Mar 12, 2015, and in revised form Jul 22, 2015. Accepted for publication Jul 29, 2015.


288 Low Risk 160 Int Risk, 9% ADT 7.25Gy x 6, 6.5yr F/u

Adverse event	Patients (n)
Total patients	22 (4.9)
Rectal grade 3 or 4	0 (0)
Urinary grade 3	
Urgency	1 (0.2)
Pelvic pain	1 (0.2)
Incontinence	3 (0.6)
Outflow impairment	
BPH	$4^{*,\dagger}$ (1.2)
Bladder neck contracture	5* (1.2)
Bulbomembranous stricture	4* (0.8)
Unspecified	3* (0.6)
Urinary grade 4	
Fistula after multiple TUR procedures	1* (0.2)

SBRT PSA nadirs

Comparable to HDR, lower than EBRT

Haas J, Blacksburg S, et al, RSNA 2015

RESEARCH

Table 3 Results (all nationts)

Hypofractionated SBRT versus conventionally fractionated EBRT for prostate cancer: comparison of PSA slope and nadir Anwar et al. Radiation Oncology 2014, 9:42 http://www.ro-journal.com/content/9/1/42

Mekhail Anwar^{*}, Vivian Weinberg, Albert J Chang, I-Chow Hsu, Mack Roach III and Alexander Gottschalk

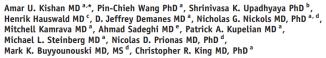
Matched pts w low-int risk dz @UCSF, CF-EBRT vs. SBRT

Pts w SBRT experienced

 lower PSA nadir
 greater rate of decline in

 PSA 2/3yrs after tx

 → c/w higher BED


		SBRT	CF-EBRT	p-value
	Through year			
PSA Measurements [#]				
Mean (range)	1	3.9 (2 – 6)	4.1 (3 – 11)	
	2	5.8 (4 - 9)	5.6 (3 - 15)	
	3	7.6 (5 – 11)	7.3 (3 – 21)	
Nadir PSA (ng/mL)				
Median (range)	1	0.70 (0 - 2.5)	1.00 (0 - 8.5)	
	2	0.40 (0 - 1.4)	0.72 (0 – 2.7)	p=0.0005*
	3	0.24 (0.1 - 1.4)	0.60 (0 - 2.2)	p=0.002*
Time to Nadir PSA (mos.)				
Median (range)	1	12.0 (2.7 – 15.0)	11.5 (1.2 – 15.0)	
	2	21.0 (2.7 – 26.9)	18.0 (1.2 – 26.9)	
	3	32.3 (2.7 – 41.6)	28.6 (1.0 - 41.1)	p=0.004^
Rate of PSA change: ng/mL/month				
Median slope (range)	1	-0.09 (-0.88, 0.04)	-0.09 (-0.60, 0.06)	
	2	-0.06 (-0.38, 0.01)	-0.04 (-0.65, 0.05)	p=0.04*
	3	-0.05 (-0.19, 0.00)	-0.02 (-0.38, 0.04)	p=0.006*

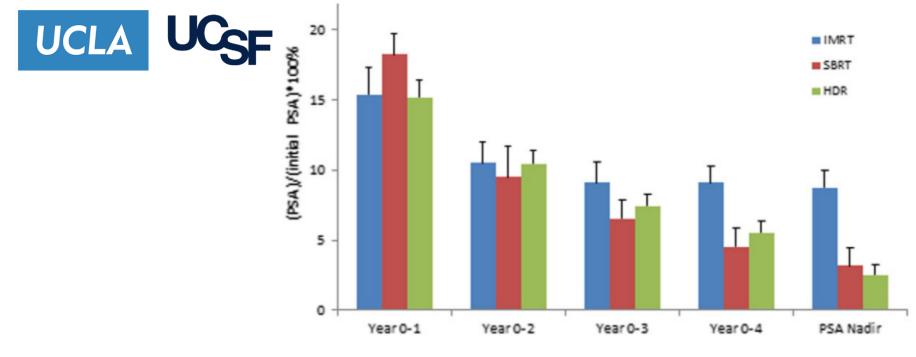
SBRT PSA nadirs

Comparable to HDR, lower than EBRT

Original Report

SBRT and HDR brachytherapy produce lower PSA nadirs and different PSA decay patterns than conventionally fractionated IMRT in patients with low- or intermediate-risk prostate cancer

^aDepartment of Radiation Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California


Department of Biological and Agricultural Engineering. University of California, Davis, Davis, California Department of Radiation Oncology, and Radiation Therapy, Heidelberg, University Hospital, Heidelberg, Germany Department of Radiation Oncology, Stanford University, Stanford, California

^eDepartment of Radiation Oncology, Veteran Affairs Greater Los Angeles Healthcare System, Los Angeles, California

```
Received 1 August 2015; revised 30 October 2015; accepted 5 November 2015 Practical Radiation Oncology (2016) 6, 268-275
```

a prettad radiation strology

Median PSA Response as a Function of Time

SBRT PSA nadirs Comparable to HDR, lower than EBRT

Original Article

A Pooled Analysis of Biochemical Failure in Intermediate-risk Prostate Cancer Following Definitive Stereotactic Body Radiotherapy (SBRT) or High-Dose-Rate Brachytherapy (HDR-B) Monotherapy

> John V. Hegde, MD,* Sean P. Collins, MD,† Donald B. Fuller, MD,‡ Christopher R. King PhD, MD,* D. Jeffrey Demanes, MD,* Pin-Chieh Wang PhD,* Patrick A. Kupelian, MD,* Michael L. Steinberg, MD,* and Mitchell Kamrava, MD* (Am J Clin Oncol 2016;00:000-000)

1.0 1. m m m 0.8 Survival probability 0.6 0.4 0.2 0.0 -HDR 137 133 130 125 115 94 SBRT 303 294 243 183 120 62 2 3 0 1 4 5 Year Treatment Modality HDR SBRT

Multi-Institutional Cohort

•5yr bDFS, p=NS •HDR 98.5% •SBRT 95.4%

SBRT cohort w higher unfav risk

Agenda

- Rationale for Hypofx for Prostate Ca
- Hypofx Prospective and RCTs
- SBRT
 - Virtual HDR? How does it compare?
 - Retrospective Series: Biochemical Control
 - QOL Series, Cost Effectiveness Models
- ASTRO/NCCN and RCTs

SBRT

	No. of		Total	No. of		Median		Late ≥G3	
Refei Bolzi 20						on Oncology Biol. I	Printed in the USA.	2012 Elsevier Inc.	
201 ELSEVIE	R		de	oi:10.1016	5/j.ijrobp.2010.11.054				o
reen and									6
201 CLINIC	AL INV	ESTIGATION	1				Genitourin	nary Cancer	
ried 20 LON	IG-TF	RM OUTCO	OMES FROM	I A PRO	OSPECTIVE TRIAI	OF STER	REOTACTIC	BODY	6
ann	0-1E				OW-RISK PROSTA			DODI	6
201									
						-			
	CHRIS	TOPHER R. K			mes D. Brooks, M.D.,	[†] Harchar	an Gill, M.D)., [†]	6
20	CHRIS	TOPHER R. K			MES D. BROOKS, M.D., C. PRESTI, JR., M.D. [†]	[†] Harchar	an Gill, M.D)., [†]	/o /o
20. ang 20. *Depa		of Radiation Onc	AND .	JOSEPH (Universit	C. PRESTI, JR., M.D. [†] y of California Los Angeles	School of Med	icine, Los Angele		/o /o
20: ang 20: *Depa atz		of Radiation Once †Depa	AND . ology and Urology, artment of Urology,	JOSEPH (Universit	C. Presti, Jr., M.D. [†]	School of Med	icine, Los Angele A		/o /o
20: ang 20: *Depa atz Kang, ³⁶ 2014	artments o	of Radiation Once †Depa intermediat	AND . ology and Urology, artment of Urology, te	JOSEPH (Universit Stanford	C. PRESTI, JR., M.D. [†] y of California Los Angeles University School of Medici	School of Med ne, Stanford, C	icine, Los Angelo A 89.6‡	es, CA; and	10 10 10
20: ing 20 *Depa itz Kang, ³⁶ 2014		of Radiation Once †Depa	AND . ology and Urology, artment of Urology,	JOSEPH (Universit	C. PRESTI, JR., M.D. [†] y of California Los Angeles	School of Med	icine, Los Angele A		/o /o /o
20: ng 20: *Depa ntz Kang, ³⁶ 2014 ng et al., ²⁰ 2009 ng et al., ³⁵	artments o	of Radiation Once †Depa intermediat	AND . ology and Urology, artment of Urology, te	JOSEPH (Universit Stanford	C. PRESTI, JR., M.D. [†] y of California Los Angeles University School of Medici	School of Med ne, Stanford, C	icine, Los Angelo A 89.6‡	es, CA; and	6 6 0% 0%
20: ing 20: *Depa itz Kang, ³⁶ 2014 ng et al., ²⁰ 2009 ng et al., ³⁵ 2012	41 67	of Radiation Once [†] Depa intermediat Low Low	AND . ology and Urology, intment of Urology, te 36.25 36.25	JOSEPH (Universit Stanford 5 5	C. PRESTI, JR., M.D. [†] y of California Los Angeles University School of Medici Prostate alone Prostate alone	School of Med ne, Stanford, C 2.75 2.7	icine, Los Angelo A 89.6‡ 100 94.0	es, CA; and 5% 3%	0%
20 ang 20 *Depa *Depa *Depa *Depa *Depa 20 20 20 20 20 14 20 20 20 20 20 20 20 20 20 20	artments o 41	of Radiation Once [†] Depa intermediat Low	AND . ology and Urology, ntment of Urology, te 36.25	JOSEPH (Universit Stanford 5	C. PRESTI, JR., M.D. [†] y of California Los Angeles University School of Medici Prostate alone	School of Med ne, Stanford, C 2.75	icine, Los Angelo A 89.6‡ 100	es, CA; and 5%	
ang 20. *Depa atz Kang, ³⁶ 2014 ing et al., ²⁰	41 67	of Radiation Once [†] Depa intermediat Low Low	AND . ology and Urology, intment of Urology, te 36.25 36.25	JOSEPH (Universit Stanford 5 5	C. PRESTI, JR., M.D. [†] y of California Los Angeles University School of Medici Prostate alone Prostate alone	School of Med ne, Stanford, C 2.75 2.7	icine, Los Angelo A 89.6‡ 100 94.0	es, CA; and 5% 3%	0%

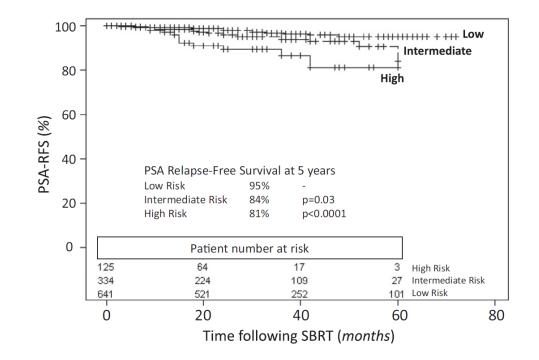
Lischalk et al. The Cancer Journal • Volume 22, Number 4, July/August 2016

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Phase II trial


Pooled 1100 patients

Stereotactic body radiotherapy for localized prostate cancer: Pooled analysis from a multi-institutional consortium of prospective phase II trials $^{\bigstar, \bigstar \bigstar}$

Christopher R. King^{a,*}, Debra Freeman^b, Irving Kaplan^c, Donald Fuller^d, Giampaolo Bolzicco^e, Sean Collins^f, Robert Meier^g, Jason Wang^a, Patrick Kupelian^a, Michael Steinberg^a, Alan Katz^h

^a Department of Radiation Oncology, UCLA, Los Angeles, CA; ^b Naples Radiation Oncology, Naples, Florida; ^c Department of Radiation Oncology, Beth Israel Deaconness, Boston, MA; ^d Radiosurgery Medical Group, San Diego, CA, United States; ^e Division of Radiation Oncology, San Bortolo Hospital, Vicenza, Italy; ^f Department of Radiation Oncology, Georgetown University, Washington DC; ^g Department of Radiation Oncology, Swedish Medical Center, Seattle, WA; and ^hFlushing Radiation Oncology, Flushing, NY, United States

Pooled 1100 patients Phase II trial

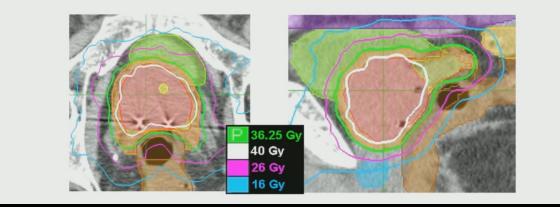
Stereotactic body radiotherapy for localized prostate cancer: Pooled analysis from a multi-institutional consortium of prospective phase II trials *,**

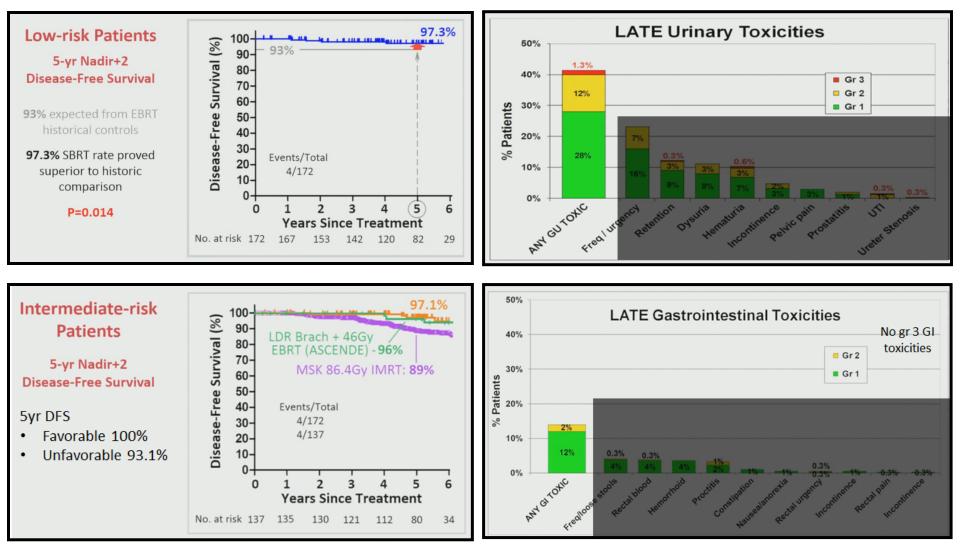
Christopher R. King^{a,*}, Debra Freeman^b, Irving Kaplan^c, Donald Fuller^d, Giampaolo Bolzicco^e, Sean Collins^f, Robert Meier^g, Jason Wang^a, Patrick Kupelian^a, Michael Steinberg^a, Alan Katz^h

^a Department of Radiation Oncology, UCLA, Los Angeles, CA; ^b Naples Radiation Oncology, Naples, Florida; ^c Department of Radiation Oncology, Beth Israel Deaconness, Boston, MA; ^d Radiosurgery Medical Group, San Diego, CA, United States; ^e Division of Radiation Oncology, San Bortolo Hospital, Vicenza, Italy; ^f Department of Radiation Oncology, Georgetown University, Washington DC; ^g Department of Radiation Oncology, Swedish Medical Center, Seattle, WA; and ^hFlushing Radiation Oncology, Flushing, NY, United States

Comparisons of 5-year PSA relapse-free survival rates by risk group and substratified by use of ADT or total dose.

	Low risk		Intermediate risk		High risk	
	5-yr bRFS	<i>p</i> -Value	5-yr bRFS	<i>p</i> -Value	5-yr bRFS	<i>p</i> -Value
ADT use	96.8%	•	97.2%	•	82.5%	•
No ADT	95.1%	0.46	79.7%	0.17	80.2%	0.50
Dose 35 Gy	95.8%	•	72.3%	•	NE	•
Dose 36.25 Gy	95.0%	0.77	87.2%	0.73	74.1%	0.99
Dose 38-40 Gy	94.4%	0.41	96.7%	0.58	NE	1.0

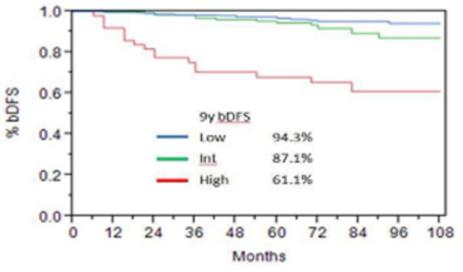

Five-Year Outcomes from a Multi-Center Trial of Stereotactic Body Radiotherapy for Low- and Intermediate-Risk Prostate Cancer


> <u>R. Meier</u>¹, A. Beckman², G. Henning³, N. Mohideen⁴, S. A. Woodhouse⁵, C. Cotrutz¹, and I. D. Kaplan⁶

¹Swedish Cancer Institute, Seattle, WA, ²Central Baptist Hospital, Lexington, KY, ³Huron River Radiation Oncology, Brighton, MI, ⁴Northwest Community Hospital, Arlington Heights, IL, ⁵Community Cancer Center, Normal, IL, ⁶Beth Israel Deaconess Medical Center, Boston, MA

Treatment Planning

- MRI fusion to assist target localization
- Prostate prescribed 8Gy x 5 = 40Gy: $EQD_{2,\alpha/\beta=2} = 100Gy$
- 2nd Rx of 7.25Gy x 5 to: Low-risk: Prostate + 3-5mm Interm-risk pts: Prostate + 2cm seminal vesicles + 3-5mm



Robert Meier, MD 2016 ASTRO

9yr Outcomes, Katz et al

GU ASCO, Jan 2016

515 pts, median f/u of 84mos

9-year freedom from biochemical failure

94.3% for low-risk men

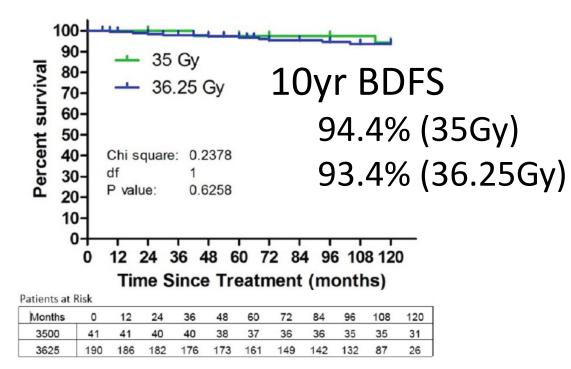
87.1% for intermediate-risk men

61.1% for high-risk men

No difference in biochemical control for the lower (35)vs.

the higher (36.25) radiation dose

Open Access Original Article


Stereotactic Body Radiotherapy for Low-Risk Prostate Cancer: A Ten-Year Analysis

Alan Katz

1. Flushing radiation

Corresponding author: Alan Katz, akatzmd@msn.com Disclosures can be found in Additional Information at the end of the article

Biochemical Disease Free Survival

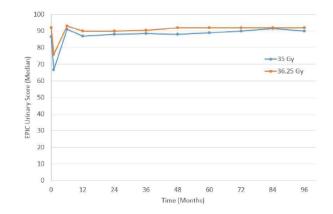


FIGURE 3: Expanded Prostate Cancer Index Composite (EPIC) urinary quality of life as a function of time since the treatment for the 35 and 36.25 Gy cohorts.

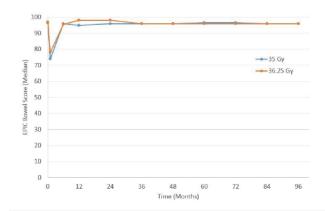
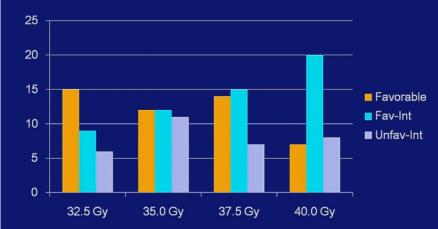
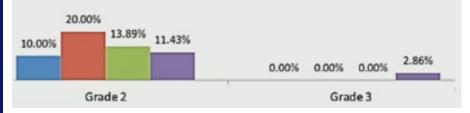



FIGURE 4: Expanded Prostate Cancer Index Composite (EPIC) bowel quality of life as a function of time since the treatment of 35 and 36.25 Gy cohorts.

MSKCC SBRT Dose Escalation Zelefsky M, et al, ASTRO 2017


Dose level	Dose	Median f/u
6.5Gy x 5	32.5Gy	60 mos
7.0Gy x 5	35.0Gy	60 mos
7.5Gy x 5	37.5Gy	44 mos
8.0Gy x 5	40.0Gy	33 mos

Enrolled Patients According to Risk Group Classification 34% Favorable / 66% Intermediate Risk

Late Urinary Frequency (> 6 Months)

■ 32.5 Gy ■ 35.0 Gy ■ 37.5 Gy ■ 40.0 Gy

Crude PSA Failure Rate and 2-year Biopsy Outcomes

dose	% PSA failure (Nadir +2 Definition)	%Positive Biopsy
32.5 Gy	20% (6/30)	48% (10/21)
35 Gy	2.9% (1/35)	19% (5/26)
37.5 Gy	0% (0/36)	17% (4/24)
40 Gy	2.9% (1/35)	8% (2/25)

Biopsy Outcomes Based on Risk Group

Dose Arm	Low Risk	Favorable Intermediate	Unfavorable Intermediate
32.5 Gy	27% (3/11)	40% (2/5)	100% (5/5)
35 Gy	0% (0/9)	25% (2/8)	33% (3/9)
37.5 Gy	13% (1/8)	25% (3/12)	0% (0/4)
40 Gy	0% (0/7)	0% (0/13)	40% (2/5)

- How many would convert to neg bx @3yrs?
- Clinical significance of low PSA and positive bx?
- How do these findings compare w EBRT 81-86.4Gy?
- CK uses non-coplanar beams
 - lower IDL
 - Deliver higher dose

Int. J. Radiation Oncology Biol. Phys., Vol. 64, No. 2, pp. 527–533, 2006 Copyright © 2006 Elsevier Inc. Printed in the USA. All rights reserved 0360-3016b06fs-see front matter

doi:10.1016/j.ijrobp.2005.07.981

CLINICAL INVESTIGATION

Prostate

BIOLOGICALLY EFFECTIVE DOSE VALUES FOR PROSTATE BRACHYTHERAPY: EFFECTS ON PSA FAILURE AND POSTTREATMENT BIOPSY RESULTS

RICHARD G. STOCK, M.D.,* NELSON N. STONE, M.D.,⁺ JAMIE A. CESARETTI, M.D.,* AND BARRY S. ROSENSTEIN, Ph.D.*

BED groups	Number of patients	Percent positive	
≤100	33	24%	
>100-120	20	15%	
>120-140	33	6%	
>140-160	52	6%	
>160-180	82	7%	
>180-200	72	1%	
>200	131	3%	p < 0.0001

Abbreviation: BED = biologically effective dose.

MSKCC SBRT Dose Escalation Zelefsky M, et al, ASTRO 2017

Dose	Median f/u	PSA failure	Positive Biopsy %	Fav Int Risk positive Bx	Unfav Int Risk positive Bx
32.5 Gy	60 mos	20%	48%	40%	100%
35 Gy	60 mos	2.9%	19%	25%	33%
37.5 Gy	44 mos	0%	17%	25%	0%
40 Gy	33 mos	2.9%	8%	0%	40%

Agenda

- Rationale for Hypofx for Prostate Ca
- Hypofx Prospective and RCTs
- SBRT
 - Virtual HDR? How does it compare?
 - Retrospective Series: Biochemical Control
 - QOL Series, Cost Effectiveness Models
- ASTRO/NCCN and RCTs
- NYU-Winthrop Hospital

Stereotactic Body Radiation Therapy Versus Intensity-Modulated Radiation Therapy for Prostate Cancer: Comparison of Toxicity

James B. Yu, Laura D. Cramer, Jeph Herrin, Pamela R. Soulos, Arnold L. Potosky, and Cary P. Gross

See accompanying editorial doi: 10.1200/JCO.2014.55.2380

James B. Yu, Laura D. Cramer, Jeph Herrin, Pamela R. Soulos, and Cary P.

A B S T R A C T

	Duration of Follow-Up						
	6 Months 12 Months 24				24 N	Months	
Toxicity	OR*	Pt	OR*	Pt	OR*	Pt	
Diagnostic procedures to investigate incontinence or obstruction	1.80	< .001	1.64	< .001	2.23	< .00	
Urethritis, urethral strictures, and bladder outlet obstruction	1.25	.14	1.45	.002	1.78	< .00	
Therapeutic procedures to correct urinary incontinence	0.71	.22	1.00	1.00	1.33	.09	
Other genitourinary toxicity	0.77	.45	1.14	.58	0.73	.23	
Infections	1.01	.99	2.30	.11	2.42	.15	
Erectile dysfunction	1.46	.03	1.15	.28	1.13	.38	

Translational Science (J.B.Y.), and by the NIH Roadmap for Medical Research.

The study sponsor (National Institutes of Health) did not play a role in the design of the study; the collection, analysis, or interpretation of the data; the writing of the manuscript; or the decision to submit the manuscript for publication. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Terms in blue are defined in the glos-

nesuns

The study sample consisted of 1,335 SBRT patients matched to 2,670 IMRT patients. The mean treatment cost was \$13,645 for SBRT versus \$21,023 for IMRT. In the 6 months after treatment initiation, 15.6% of SBRT versus 12.6% of IMRT patients experienced GU toxicity (odds ratio [OR], 1.29; 95% CI, 1.05 to 1.53; P = .009). At 24 months after treatment initiation, 43.9% of SBRT versus 36.3% of IMRT patients had GU toxicity (OR, 1.38; 95% CI, 1.12 to 1.63; P = .001). The increase in GU toxicity was due to claims indicative of urethritis, urinary incontinence, and/ or obstruction.

Conclusion

Although SBRT was associated with lower treatment costs, there appears to be a greater rate of GU toxicity for patients undergoing SBRT compared with IMRT, and prospective correlation with randomized trials is needed.

J Clin Oncol 32. © 2014 by American Society of Clinical Oncology

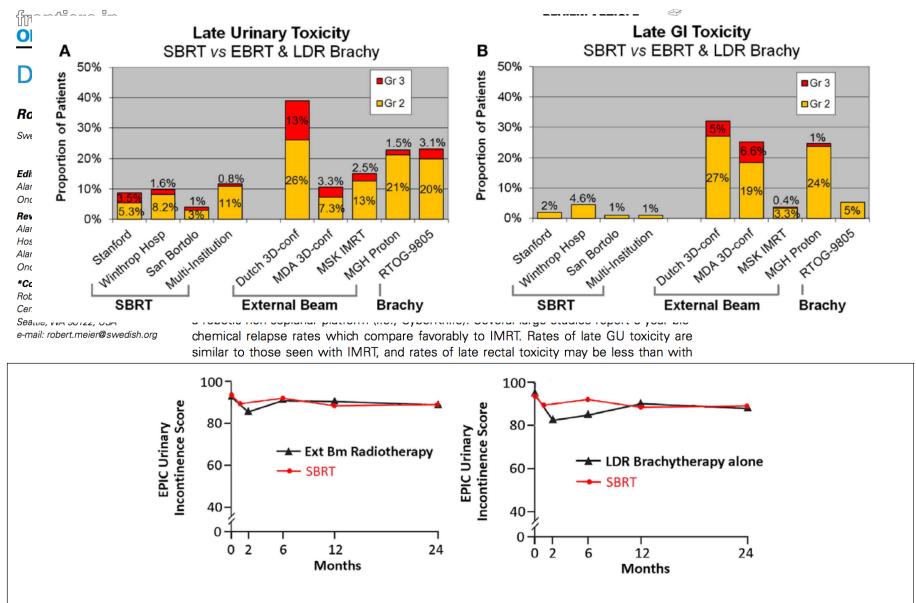


FIGURE 3 | EPIC urinary incontinence scores at baseline and at various intervals following treatment (months) from Sanda (96) (black: left graph is for external beam RT and right is for brachytherapy) and SBRT (red). SBRT, stereotactic body radiotherapy; RT, radiation therapy.

Meier et al, Frontiers, 2015

Contents lists available at ScienceDirect

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

<text><text><text><text><text><text>

Patient reported outcome measures

Patient-reported quality of life after stereotactic body radiotherapy (SBRT), intensity modulated radiotherapy (IMRT), and brachytherapy

Joseph R. Evans^{a,1}, Shuang Zhao^{a,1}, Stephanie Daignault^b, Martin G. Sanda^c, Jeff Michalski^d, Howard M. Sandler^e, Deborah A. Kuban^f, Jay Ciezki^g, Irving D. Kaplan^h, Anthony L. Zietmanⁱ, Larry Hembroff^j, Felix Y. Feng^a, Simeng Suy^k, Ted A. Skolarus^{1,m}, Patrick W. McLaughlin^a, John T. Wei¹, Rodney L. Dunn¹, Steven E. Finkelsteinⁿ, Constantine A. Mantzⁿ, Sean P. Collins^k, Daniel A. Hamstra^{a,*}, and the PROSTQA Study Consortium

^a Department of Radiation Oncology, University of Michigan, Ann Arbor; ^b Department of Biostatistics, University of Michigan; ^c Department of Urology, Emory University, Atlanta; ^d Department of Radiation Oncology, Washington University Medical Center, St. Louis; ^e Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles; ^f Department of Radiation Oncology, M.D. Anderson Cancer Center, Houston; ^g Department of Radiation Oncology, Cleveland Clinic; ^h Beth Israel Deaconess Medical Center; ⁱ Department of Radiation Oncology, Massachusetts General Hospital, Boston; ^j Michigan State University, East Lansing; ^k Georgetown University, Washington; ¹ Department of Urology, University of Michigan; ^m HSR&D Center for Clinical Management Research, VA Ann Arbor Healthcare System; and ⁿ 21st Century Oncology, Ft Meyers, United States

•803 pts tx'd at multiple institutions w LDR brachy, IMRT, or SBRT

- •1200 EPIC questionnaires for year 0-2
- •Minimal clinically detectable (MCD) thresholds for QOL domains
 - •6 urinary irritation/obstruction
 - •7.5 urinary incontinence
 - •5 bowel and vitality/hormonal
 - •11 sexual domain

Patient reported outcome measures Radiotherapy and Oncology 116 (2015) 179–184

Patient-reported quality of life after stereotactic body radiotherapy (SBRT), intensity modulated radiotherapy (IMRT), and brachytherapy

Joseph R. Evans^{a,1}, Shuang Zhao^{a,1}, Stephanie Daignault^b, Martin G. Sanda^c, Jeff Michalski^d

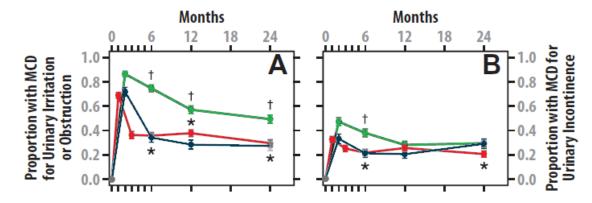


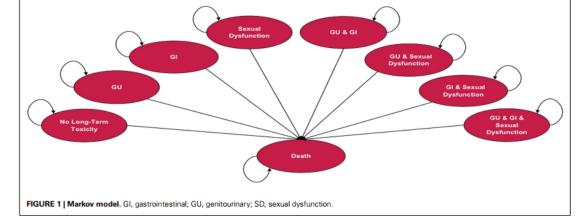
Table 1 Multivariate analysis.

	Multivariate an	alysis
	p-Value	Coefficient
Urinary irritation or obstruction		
Brachytherapy (vs. IMRT)	< 0.0001	-6.8(-9.9, -3.6)
SBRT (vs. IMRT)	0.55	-1 (-4.4,2.3)
SBRT (vs. Brachy)	0.00051*	5.8 (2.5,9)
Urinary incontinence		
Brachytherapy (vs. IMRT)	0.21	-2.4(-6.1,1.4)
SBRT (vs. IMRT)	0.74	0.68 (-3.3,4.7)
SBRT (vs. Brachy)	0.11	3 (-0.73,6.8)
Bowel		
Brachytherapy (vs. IMRT)	0.48	1.1 (-2,4.3)
SBRT (vs. IMRT)	0.00014*	6.7 (3.2,10)
SBRT (vs. Brachy)	0.001*	5.5 (2.2,8.8)

† p<0.05 (χ²) vs. IMRT ★ p<0.05 (χ²) vs. Brachytherapy

SBRT Cost Effectiveness

frontiers	រៃល
ONCOLOG	ìΥ


ORIGINAL RESEARCH ARTICLE published: 20 August 2012 doi: 10.3389/fonc.2012.00081

Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer

Anju Parthan¹*, Narin Pruttivarasin¹, Diane Davies², Douglas C. A. Taylor¹, Vivek Pawar³, Akash Bijlani², Kristen Hassmiller Lich⁴ and Ronald C. Chen⁴

 65yo w localized Prostate Cancer declined or ineligible for surgery

Agenda

- Rationale for Hypofx for Prostate Ca
- Hypofx Prospective and RCTs
- SBRT
 - Virtual HDR? How does it compare?
 - Retrospective Series: Biochemical Control
 - QOL Series, Cost Effectiveness Models
- ASTRO/NCCN and RCTs

National Comprehensive Cancer Network* NCCN Guidelines Version 1.2015 Prostate Cancer

PRINCIPLES OF RADIATION THERAPY

NCCN

- Primary External Beam Radiation Therapy
- · Highly conformal RT techniques should be used to treat prostate cancer.
- Doses of 75.6 to 79.2 Gy in conventional fractions to the prostate (± seminal vesicles for part of the therapy) are appropriate for patients with low-risk cancers. For patients with intermediate- or high-risk disease, doses up to 81.0 Gy provide improved PSA-assessed disease control.
- Moderately hypofractionated image-guided IMRT regimens (2.4–4 Gy per fraction over 4–6 weeks) have been tested in randomized trials reporting similar efficacy and toxicity to conventionally fractionated IMRT. They can be considered as an alternative to conventionally fractionated regimens when clinically indicated.

ASTRO Model Policies

STEREOTACTIC BODY RADIATION THERAPY (SBRT)

Prostate Cancer:

Many clinical studies supporting the efficacy and safety of SBRT in the treatment of prostate cancer have been published. At least one study has shown excellent five year biochemical control rates with very low rates of serious toxicity. Additionally, numerous studies have demonstrated the safety of SBRT for prostate cancer after a follow-up interval long enough (two to three years) to provide an opportunity to observe the incidence of late GU or GI toxicity. While it is necessary to observe patients treated for prostate cancer for extended intervals to gauge the rate of long term (beyond 10 years) biochemical control and overall survival, the interim results reported appear at least as good as other forms of radiotherapy administered to patients with equivalent risk levels followed for the same duration post-treatment.

It is ASTRO's opinion that data supporting the use of SBRT for prostate cancer have matured to a point where SBRT could be considered an appropriate alternative for select patients with low to intermediate risk disease.

RADIATION THERAPY ONCOLOGY GROUP

RTOG 0938

A RANDOMIZED PHASE II TRIAL OF HYPOFRACTIONATED RADIOTHERAPY FOR FAVORABLE RISK PROSTATE CANCER

S T R A	<u>Treatment techniques/machine</u> 1. All linear accelerator based treatment (excluding Cyberknife)	RANDO	<u>Arm 1</u> 36.25 Gy in 5 fractions of 7.25 Gy over two and a half weeks (in 15-17 days)*
T F Y	 Cyberknife Protons 	M I Z E	<u>Arm 2</u> 51.6 Gy in 12 daily fractions of 4.3 Gy over two and a half weeks (in 16-18 days)

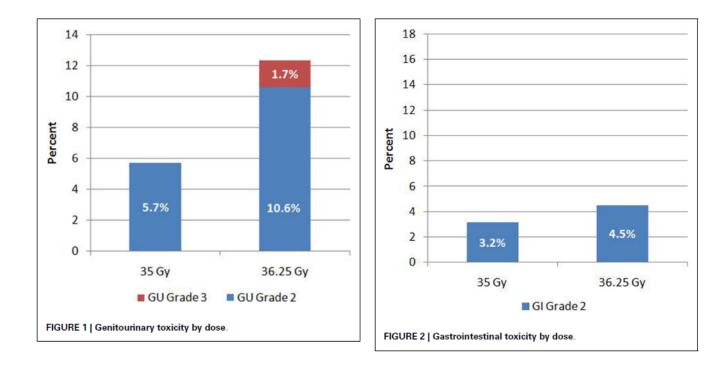
Phase 3 SBRT Trials

Institution/study	Eligibility	Arms	Primary outcomes
Curie Institute Poland, NCT01839994	T1–T3a N0 M0	76–78 Gy, 2 Gy/fx 50 Gy EBRT + 10 Gy × 2 SBRT/HDR boost	bDFS, toxicity
University of Miami, NCT01794403 HEAT trial	T1–T2 N0 M0, low-, intermediate-risk	70.2 Gy, 2.7 Gy/fx IMRT 36.25 Gy, 5 fxs SBRT	2-year bDFS
University Hosp Geneva, NCT01764646	T1–T3a N0 M0	36.25 Gy SBRT 9 days 36.25 Gy SBRT once/week	Acute, late toxicity
Swedish HYPO-RT-PC, ISRCTN45905321	Intermediate-risk	78 Gy, 2 Gy/fx RT 42.7 Gy, 6.1 Gy/fx	bDFS
Royal Marsden PACE, CRUKE/12/025 PACE trial	T1-T2 N0 M0	Prostatectomy vs. SBRT (36.25–38 Gy, 4–5 fxs) SBRT vs. conventional RT (78 Gy, 2 Gy/fx)	5-year bDFS

 Additional dose-escalation and phase 2 studies continue to explore MTDs and varying schedules of prostate SBRT

Conclusion

- Prostate Cancer has a unique biology that appears to favor higher doses/fx with external RT
- There is mature data regarding Hypo-fx RT for prostate cancer→ Standard of care
- SBRT is a(n) cautious validated alternative
 - Should be performed at "high volume" centers with expertise
 - Promising early results, limited long-term data
 - Mixed QOL parameters must continue to be explored with greater follow-up


Thank you

Hypofractionated Experience

- 1960s-1980s, St. Thomas Hospital London, 209pts
 - 55Gy/12fx's, then
 - 36Gy/6fx's (Lloyd Davies)
 - No PSA, low rectal, urologic toxicity

7yr Outcomes, Katz et al

7.25Gy/fx on steep part of curve?
 – Daily vs. QOD fractionation

Katz et al, Frontiers, 2014

SBRT

• BUT

- Contours must be pristine, as if through TRUS
 - Thin CT slices
 - 3T MRI fusion
 - Define base-v-bladder neck, apex accurately
 - Not just "rules of thumb"
- Intrafraction prostatic motion must be accounted for
 - Translation +/- Rotation

www.redjournal.org

Clinical Investigation: Genitourinary Cancer

Health-Related Quality of Life After Stereotactic Body Radiation Therapy for Localized Prostate Cancer: Results From a Multi-institutional Consortium of Prospective Trials^{*}

Christopher R. King, PhD, MD, * Sean Collins, MD,[†] Donald Fuller, MD,[‡] Pin-Chieh Wang, PhD, * Patrick Kupelian, MD, * Michael Steinberg, MD, * and Alan Katz, MD, JD^8

*Department of Radiation Oncology, University of California, Los Angeles, California; [†]Department of Radiation Oncology, Georgetown University, Washington, District of Columbia; [‡]Genesis Healthcare Partners, San Diego, California; and [§]Flushing Radiation Oncology, Flushing, New York

Received Jun 25, 2013, and in revised form Aug 17, 2013. Accepted for publication Aug 19, 2013.

- 864 patients treated w SBRT, 2005-2012
 - Self-reported QOL prospectively measured
 - Phase 2 clinical trials of SBRT for localized dz

Transient decline in urinary and bowel domains w/in 3 mos post Tx

returned to baseline w/in 6 mos and remained so at 5yrs

 Table 1
 Mean baseline Expanded Prostate Cancer Index Composite scores and change over time relative to baseline for all patients following prostate stereotactic body radiation therapy

Time	Number of patients	Urinary domain	Bowel domain	Sexual domain
Baseline	864	89 ± 12	95 ± 9	53 ± 28
1-3 mo	826	-8.7 [-9.5 to -7.8]	-12 [-13.1 to -11]	-5.1 [-6.5 to -3.7]
6 mo	500	-0.95 [-1.9 to 0.01]	-3.5 [-4.5 to -2.5]	-4.2 [-5.8 to -2.5]
9 mo	388	-2.9 [-4.1 to -1.7]	-4.0 [-5.1 to -2.9]	-6.1 [-8.1 to -4]
12 mo	658	-2.5 [-3.4 to -1.6]	-3.2 [-4.2 to -2.3]	-5.5 [-7 to -4]
24 mo	489	-0.6 [-1.5 to 0.3]	-1.1 [-2 to 0.2]	-6.1 [-7.9 to -4.4]
36 mo	388	0.4 [-0.6 to 1.3]	-0.85 [-2.2 to 0.5]	-7.3 [-9.3 to -5.3]
48 mo	271	1.9 [0.9 to 2.8]	0.6 [-0.3 to 1.4]	-10.6 [-12.4 to -8.7]
60 mo	194	1.8 [0.7 to 2.9]	0.9 [0 to 1.9]	-13.1 [-14.9 to -11.3]
72 mo	63	2.3 [0.9 to 3.7]	1.8 [0.6 to 3]	-13.7 [-16.2 to -11.1]

Negative values indicate a decline and positive values indicate an improvement over baseline scores. The 95% confidence interval is given in brackets.

Int J Radiat Oncol Biol Phys. 2013 Dec 1;87(5):939-45

Clinical Investigation: Genitourinary Cancer

Predictors of Rectal Tolerance Observed in a Dose-Escalated Phase 1-2 Trial of Stereotactic Body Radiation Therapy for Prostate Cancer

D. W. Nathan Kim, MD, PhD,* L. Chinsoo Cho, MD,[†] Christopher Straka, BS,* Alana Christie, MS,[‡] Yair Lotan, MD,[§] David Pistenmaa, MD,* Brian D. Kavanagh, MD,^{||} Akash Nanda, MD, PhD,[¶] Patrick Kueplian, MD,[#] Jeffrey Brindle, MD,** Susan Cooley, RN,* Alida Perkins, ANP,* David Raben, MD,^{||} Xian-Jin Xie, PhD,[‡] and Robert D. Timmerman, MD*

Table L		worst acute and delayed rectal toxicity in patients by radiation prescription dose neve						
	45 Gy (n=15)		47.5 Gy (n=15)		50 Gy (50 Gy (n=61)		
Grade	Acute	Late	Acute	Late	Acute	Late		
0	9 (60.0)	10 (66.7)	7 (46.7)	8 (53.3)	23 (37.7)	20 (32.8)		
1	6 (40.0)	4 (26.7)	4 (26.7)	2 (13.3)	23 (37.7)	21 (34.4)		
2	0	1 (6.7)	4 (26.7)	5 (33.3)	13 (21.3)	15 (24.6)		
3	0	0	0	0	1* (1.6)	3 (4.9)		
4	0	0	0	0	1 (1.6)	2 (3.3)		

Table 2	Worst acute and del	ayed rectal toxicity	n patients by radiat	ion prescription dose level
---------	---------------------	----------------------	----------------------	-----------------------------

International Journal of Radiation Oncology biology • physics

www.redjournal.org

doi:10.1016/j.ijrobp.2005.07.981

MSKCC SBRT Dose Escalation

Zelefsky M, et al, ASTRO 2017

Dose	Median f/u	PSA failure	Positive Biopsy %	Fav Int Risk positive Bx	Unfav Int Risk positive Bx
32.5 Gy	60 mos	20%	48%	40%	100%
35 Gy	60 mos	2.9%	19%	25%	33%
37.5 Gy	44 mos	0%	17%	25%	0%
40 Gy	33 mos	2.9%	8%	0%	40%

CLINICAL INVESTIGATION

Prostate

BIOLOGICALLY EFFECTIVE DOSE VALUES FOR PROSTATE BRACHYTHERAPY: EFFECTS ON PSA FAILURE AND POSTTREATMENT BIOPSY RESULTS

Richard G. Stock, M.D.,* Nelson N. Stone, M.D.,[†] Jamie A. Cesaretti, M.D.,* and Barry S. Rosenstein, Ph.D.*

BED groups	Number of patients	Percent positive	
≤100	33	24%	
>100-120	20	15%	
>120-140	33	6%	
>140-160	52	6%	
>160-180	82	7%	
>180-200	72	1%	
>200	131	3%	p < 0.0001

Abbreviation: BED = biologically effective dose.

Positive Biopsy (139) 106 Negative Biopsy (64) % Expected (203) SURVIVAL 60 40 20 Geban P-value 0 459 25 10 15 20 8 SURVIVAL ositive Biopsy (139) 100 Negative Biopsy (64) SPECIFIC 60 Gehan P-value 0.0923 CAUSE 25 15 20 10 TIME (yrs)

THE CLINICAL SIGNIFICANCE OF A POSITIVE POST-IRRADIATION PROSTATIC BIOPSY WITHOUT METASTASES

Bradley R. Prestidge, M.D.,* Irving Kaplan, M.D.,[†] Richard S. Cox, Ph.D.[†] and Malcolm A. Bagshaw, M.D.[†]

*Radiation Oncology Service, Wilford Hall, USAF Medical Center, Lackland Air Force Base, TX [†]Department of Radiation Oncology, Stanford University Medical Center, Stanford, CA

Int. J. Radiation Oncology Biol. Phys., Vol. 24, pp. 403-408 1992

To define the prognostic value of a post-irradiation prostatic biopsy, the outcome of 203 previously irradiated patients who underwent post-treatment biopsy was analyzed. The majority of patients were selected for biopsy based on an abnormal digital rectal exam or elevated prostate specific antigen. Patients with distant metastases found at the time of biopsy were excluded from further analysis. One hundred thirty-nine (139) of these had a positive biopsy and 64 were negative. Those with a positive biopsies (42%). The 10- and 15-year survival and cause-specific survival from the time of initial presentation were similar for both groups. However, those with a negative biopsy group. These data suggest that a positive prostatic biopsy is associated with a greater likelihood of subsequent distant relapse and decreased survival following biopsy relative to patients with negative biopsies. Since a positive post-treatment biopsy is more likely among patients presenting with locally-advanced disease, perhaps more aggressive initial therapy (i.e., interstitial boost or hyperthermia) would benefit this subgroup.

- Stanford, 1956-1989, 139pts w pos bx
 - 40 observed
 - 99 received various secondary therapies

7yr Outcomes, Katz et al

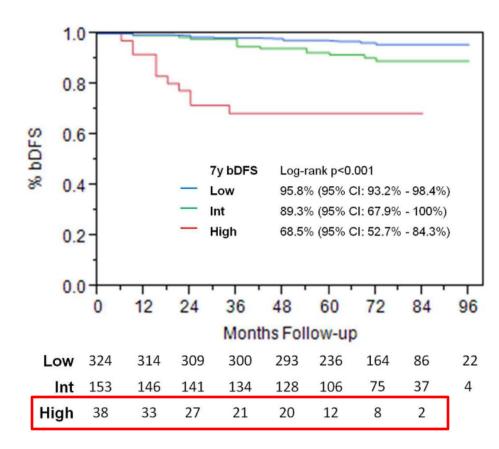


Table 2 | Univariate (UVA) and multivariate (MVA) logistic regression analyses looking at patient characteristics and the effect on Grade 2 or higher late GU toxicity.

Factor	UVA		MVA	
	p	p	RR (95% CI)	
Prostate size (above or below 60 cc)	0.03	0.03	0.86 (0.66–1.13)	
Dose (35 versus 36.25 Gy)	0.051	<0.0001	3.31 (2.17–5.35)	
Baseline GU EPIC score (above or below 90)	0.39	0.58	0.93 (0.71–1.21)	